PCSI 1 - DEVOIR MAISON N° 11 A rendre le lundi 24 février 2020

Année scolaire 2019-2020

Exercice 1 : Dérivabilité

On pose $f(x) = \sqrt{x+1}\ln(x+1)$.

- 1. Montrer que f est définie sur $]-1,+\infty[$.
- 2. Montrez soigneusement que f est continue sur $]-1,+\infty[$ et qu'on peut la prolonger par continuité en -1.

On note encore $f: [-1, +\infty[\longrightarrow \mathbb{R} \text{ ce prolongement.}]$

- 3. (a) Montrez soigneusement que f est dérivable sur $]-1,+\infty[$.
 - (b) Montrer qu'elle n'est pas dérivable en -1 en calculant la limite du taux de variations.
 - (c) Montrer qu'elle n'est pas dérivable en -1 en calculant la limite de la dérivée.
- 4. Dresser son tableau de variations avec les limites aux bornes et tracer l'allure de sa courbe en précisant les éventuelles asymptotes et les tangentes aux points remarquables (ici -1, $-1 + e^{-2}$ et 0).

Exercice 2 : Calculs de racines

On considère le polynôme P de $\mathbb{C}[X]$:

$$P(X) = X^4 + 5X^2 + 5$$

- 1. Donnez l'expression générale des racines cinquièmes de l'unité, sous forme trigonométrique (c'est à dire sous la forme $\rho e^{i\theta}$).
- 2. Montrez que si z est une racine cinquième de l'unité, distincte de 1, alors $z-z^4$ est une racine du polynôme P.

<u>Hint</u>. Partir de $P(z-z^4) = (z-z^4)^4 + 5(z-z^4)^2 + 5$ et développer en utilisant que $z^5 = 1$ et $z \neq 1$.

3. Déduisez-en les racines du polynôme P en fonction de $\alpha = e^{2i\pi/5}$ puis en fonction de $\sin(\pi/5)$ et $\sin(2\pi/5)$.

<u>Hint</u>. On trouve $\pm 2i \sin\left(\frac{\pi}{5}\right)$ et $\pm 2i \sin\left(\frac{2\pi}{5}\right)$.

4. En se ramenant à une équation du second degré, calculez les racines de P sous forme algébrique.

<u>Hint</u>. Résoudre $z^4 + 5z^2 + 5 = 0$ en posant $t = z^2$. Les 2 valeurs de t calculées vont donner t valeurs de t.

5. En déduire la valeur exacte de $\sin(\pi/5)$ et de $\sin(2\pi/5)$.

PROBLÈME: Localisation des racines d'un polynôme

Dans tout le problème n désigne un entier naturel non nul. Si a et b sont deux entiers naturels tels que a < b on note [a, b] l'ensemble des entiers naturels k tels que $a \le k \le b$.

Si $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , pour un polynôme $P(X) \in \mathbb{K}[X]$ on notera P la fonction polynôme associée à P(X). On note P'(X) le polynôme dérivé de P(X).

Partie A: Une majoration des modules des racines d'un polynôme

Soit $P(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 \in \mathbb{C}[X]$ un polynôme unitaire de degré $n \in \mathbb{N}^*$. On se propose de montrer que les racines de P(X) appartiennent au disque fermé de centre O et de rayon R où

$$R = \max\{|a_0|, 1 + |a_1|, 1 + |a_2|, \dots, 1 + |a_{n-1}|\}$$

1. Exemple numérique

On considère les nombres complexes $a_0 = 6 - 2i$, $a_1 = -3 - 5i$, $a_2 = -2 + 3i$, et on définit le polynôme $P(X) \in \mathbb{C}[X]$ par :

$$P(X) = X^3 + a_2 X^2 + a_1 X + a_0$$

- (a) Montrer que P(X) possède une racine réelle. <u>Hint</u>. Pour $x \in \mathbb{R}$, montrer que $P(x) = 0 \iff \begin{cases} x^3 - 2x^2 - 3x + 6 = 0 \\ 3x^2 - 5x - 2 = 0 \end{cases}$ On trouve x = 2.
- (b) Résoudre dans \mathbb{C} l'équation : $z^2 + 3iz (3 i) = 0$. <u>Hint</u>. C'est le chapitre 3. On trouve 1 - 2i et -1 - i.
- (c) Déterminer les racines de P(X) et vérifier qu'elles appartiennent au disque fermé de centre O et de rayon R où $R = \max\{|a_0|, 1 + |a_1|, 1 + |a_2|\}$.

 Hint. Calculer R puis pour chaque racine $z \in \mathbb{C}$, vérifier que $|z| \leq R$.

La suite du devoir est facultative.

2. Un résultat sur la matrice compagnon d'un polynôme

Soit $P(X) = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0 \in \mathbb{C}[X]$ un polynôme. On lui associe la matrice carrée d'ordre n notée A, appelée matrice compagnon de P, et définie par :

$$A = \begin{pmatrix} 0 & 0 & 0 & \dots & \dots & 0 & 0 & -a_0 \\ 1 & 0 & 0 & \dots & \dots & 0 & 0 & -a_1 \\ 0 & 1 & 0 & \dots & \dots & 0 & 0 & -a_2 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \dots & 1 & 0 & -a_{n-2} \\ 0 & 0 & 0 & \dots & \dots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

$$\text{Pour } k \in [\![1,n]\!], \text{ on notera } E_k \text{ la matrice colonne de } \mathcal{M}_{n,1}(\mathbb{C}) \text{ définie par } E_k = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow k\text{-ième}$$

(a) Justifier que si $M \in \mathcal{M}_n(\mathbb{C})$ et $k \in [1, n]$, alors $M \times E_k$ donne la k-ième colonne de M.

- (b) Dans cette question on montre que $P(A) = A^n + a_{n-1}A^{n-1} + \ldots + a_1A + a_0I_n = 0_n$. Pour cela, on note $B \in \mathcal{M}_n(\mathbb{C})$ la matrice $B = P(A) = A^n + a_{n-1}A^{n-1} + \ldots + a_1A + a_0$.
 - i. Vérifier que $A \times E_1 = E_2, \ A \times E_2 = E_3, \ \ldots, \ A \times E_{n-1} = E_n$ et que $A \times E_n = E_n$

$$\begin{bmatrix} -a_1 \\ -a_1 \end{bmatrix}.$$
Démontrer que $B \times E_1 = 0$

- ii. Démontrer que $B \times E_1 = 0_{n,1}$
- iii. En déduire, pour tout $k \in [1, n]$, $B \times E_k = 0_{n,1}$.
- iv. Conclure que $B = 0_n$.
- v. Vérification. Vérifier ce résultat à la calculatrice avec la matrice compagnon A associée au polynôme P(X) de la question 1.
- (c) Dans cette question on se donne λ une racine de P(X). On veut montrer qu'il existe $V \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que $V \neq 0_{n,1}$ et $AV = \lambda V$.

Comme λ est racine de P(X) on sait qu'il esiste un polynôme R(X) tel que $P(X) = (X - \lambda) \times R(X)$.

i. Justifier que deg(R(X)) = n - 1.

On note donc $R(X) = \alpha_{n-1}X^{n-1} + \cdots + \alpha_1X + \alpha_0$ et on a alors $R(A) = \alpha_{n-1}A^{n-1} + \cdots + \alpha_1A + \alpha_0I_n \in \mathcal{M}_n(\mathbb{C}).$

- ii. Calculer $R(A) \times E_1$ et en déduire que $R(A) \neq 0_n$.
- iii. Justifier alors qu'il existe $X \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que $R(A) \times X \neq 0_{n,1}$ puis à l'aide de la question 2.(b) que $(A \lambda I_n) \times R(A) \times X = 0_{n,1}$.
- iv. Conclure qu'il existe $V \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que $V \neq 0_{n,1}$ et $AV = \lambda V$.

3. Étude du cas général

Soit $A = (a_{i,j})$ une matrice carrée d'ordre n à coefficients dans \mathbb{C} . On pose, pour tout entier $i \in [\![1,n]\!]$:

$$r_i = \sum_{j=1}^n |a_{i,j}|$$
 et $D_i = \{z \in \mathbb{C}; |z| \le r_i\}$

- (a) Soient $\lambda \in \mathbb{C}$ et $V \in \mathcal{M}_{n,1}(\mathbb{C})$ tels que $V \neq 0_{n,1}$ et $AV = \lambda V$. On pose $V = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ où $v_i \in \mathbb{C}$ pour tout $i \in [1, n]$.
 - i. Montrer que pour tout entier $i \in [1, n]$, on a :

$$|\lambda v_i| \le r_i \times \max_{k \in [1,n]} (|v_k|)$$

- ii. En déduire que : $\lambda \in \bigcup_{i=1}^n D_i$.
- (b) À l'aide des questions 2.(c) et 3.(a), conclure que les racines de P(X) appartiennent au disque fermé de centre O et de rayon R où

$$R = \max\{|a_0|, 1 + |a_1|, 1 + |a_2|, \dots, 1 + |a_{n-1}|\}$$

(c) **Application.** Soient a, b, c et d quatre entiers naturels distincts et non nuls. Démontrer que l'équation d'inconnue n:

$$n^a + n^b = n^c + n^d$$

n'admet pas de solution sur $\mathbb{N}\setminus\{0;1\}$.

Partie B : La borne de Cauchy

Dans cette partie on se propose de donner un autre encadrement des modules des racines d'un polynôme en fonction de ses coefficients.

1. Un résultat préliminaire

Soient $(c_i)_{i \in [0,n-1]}$ des réels positifs non tous nuls. On considère le polynôme H(X) défini par :

$$H(X) = X^{n} - \sum_{k=0}^{n-1} c_{k} X^{k}$$

et on définit sur $]0, +\infty[$ la fonction h par :

$$h(x) = -\frac{H(x)}{r^n}$$

- (a) Montrer que la fonction h est strictement décroissante sur $]0, +\infty[$.
- (b) En déduire que le polynôme H(X) admet une unique racine réelle strictement positive qu'on note α et montrer que cette racine est une racine simple.
- (c) Soit ζ une racine complexe de H(X). On suppose que $|\zeta| > \alpha$, montrer alors que :

$$|\zeta|^n > \sum_{k=0}^{n-1} c_k |\zeta|^k$$

(d) En déduire que toutes les racines de H(X) appartiennent au disque fermé de centre O et de rayon α .

2. Une application

On considère un entier $m \geq 2$ et un polynôme $F(X) = \sum_{k=0}^{m-1} a_k X^k$ de degré m-1 tel que a_k soit un réel strictement positif pour tout $k \in [\![0,m-1]\!]$. On pose $\gamma = \max_{k \in [\![1,m-1]\!]} \left\{ \frac{a_{k-1}}{a_k} \right\}$ et on considère une racine complexe ζ du polynôme F(X).

(a) En considérant le polynôme $F_{\gamma}(X) = (X - \gamma)F(X)$, montrer que :

$$|\zeta| < \gamma$$

(b) On pose $\gamma' = \min_{k \in [\![1,m-1]\!]} \left\{ \frac{a_{k-1}}{a_k} \right\}$. Montrer que :

$$\gamma' \le |\zeta|$$

3. La borne de Cauchy

Soit $F(X) = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X]$ un polynôme de degré n tel que les $(a_k)_{k \in [0,n-1]}$ soient non tous nuls.

(a) Montrer que l'équation d'inconnue x:

$$\sum_{k=0}^{n-1} |a_k| x^k = |a_n| x^n$$

possède une unique solution réelle strictement positive.

Cette racine est appelée borne de Cauchy de F(X) et sera notée dans la suite $\rho(F)$.

(b) Montrer que pour toute racine complexe ζ de F(X) on a :

$$|\zeta| \le \rho(F)$$

(c) Soit $(\zeta_i)_{i\in \llbracket 1,n\rrbracket}$ les n racines complexes (distinctes ou non) de F(X) avec

$$0 \le |\zeta_1| \le |\zeta_2| \le \dots \le |\zeta_n| \le \rho(F)$$

i. Montrer que pour tout entier $k \in [0, n]$ on a :

$$\left| \frac{a_k}{a_n} \right| \le \binom{n}{k} |\zeta_n|^{n-k}$$

où $\binom{n}{k}$ désigne le coefficient binômial : $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

ii. En déduire que :

$$\rho(F)^n \le \sum_{k=0}^{n-1} \binom{n}{k} \rho(F)^k |\zeta_n|^{n-k}$$

iii. En déduire que :

$$\left(\sqrt[n]{2} - 1\right)\rho(F) \le |\zeta_n|$$

iv. On suppose que 0 n'est pas racine de F(X) et on pose $G(X) = \sum_{k=0}^{n} a_k X^{n-k}$. On note $\rho(G)$ la borne de Cauchy de G(X). Montrer que :

$$\frac{1}{\rho(G)} \le |\zeta_1| \le \frac{1}{(\sqrt[n]{2} - 1)\rho(G)}$$

(d) En reprenant le polynôme P(X) de la question 1. de la partie A, déterminer à la calculatrice une valeur approchée de la borne de Cauchy de P(X) et vérifier pour ce polynôme les résultats obtenus aux questions 3.(b), et 3.(c).iii..

4. Un raffinement de la borne de Cauchy

On considère toujours $F(X) = \sum_{k=0}^n a_k X^k \in \mathbb{C}[X]$ un polynôme de degré n tel que les $(a_i)_{i\in \llbracket 0,n-1\rrbracket}$ soient non tous nuls.

On pose

$$F_1(X) = a_n X^n + \sum_{k=0}^{n-2} a_k X^k$$

On se propose de montrer que les racines de F(X) appartiennent à $\mathcal{D}_0 \cup \mathcal{D}_1$ où \mathcal{D}_0 et \mathcal{D}_1 sont les disques définis par :

$$\mathcal{D}_0 = \{ z \in \mathbb{C}; |z| \le \rho(F_1) \}$$
 et $\mathcal{D}_1 = \left\{ z \in \mathbb{C}; \left| z + \frac{a_{n-1}}{a_n} \right| \le \rho(F_1) \right\}$

et où $\rho(F_1)$ désigne la borne de Cauchy de $F_1(X)$.

- (a) Montrer que $\rho(F_1) \leq \rho(F)$.
- (b) Soit ζ une racine de F(X) n'appartenant pas à \mathcal{D}_0 . Montrer que :

$$|a_{n-1} + a_n \zeta| \le \frac{1}{\rho(F_1)^{n-1}} \sum_{k=0}^{n-2} |a_k| \rho(F_1)^k = |a_n| \rho(F_1)$$

(c) Conclure.