EXERCICE 1: Produits infinis

On considère dans tout l'exercice une suite $(u_n)_{n\in\mathbb{N}^*}$ de **réels non nuls**. On lui associe la suite $(P_N)_{N\in\mathbb{N}^*}$ définie par :

$$\forall N \in \mathbb{N}^*, \quad P_N = \prod_{n=1}^N u_n = u_1 \times u_2 \times \dots \times u_n \times \dots \times u_N$$

On dira que le produit infini $\prod_{n>1} u_n$ est <u>convergent</u> lorsque la suite $(P_n)_{n\in\mathbb{N}^*}$ admet une **limite**

finie non nulle, et cette limite sera notée $\prod_{n=1}^{+\infty} u_n$. Dans le cas contraire, on dira que le produit diverge.

On peut aussi généraliser ces notions au produit infini $\prod_{n\geq n_0} u_n$ et à sa limite $\prod_{n=n_0}^{+\infty} u_n$.

Partie I: Premiers résultats

- 1. Condition nécessaire de convergence.
 - (a) Pour $N \geq 2$, déterminer u_N en fonction de P_N et P_{N-1} . En déduire que si le produit infini $\prod_{n\geq 1} u_n$ converge, alors $\lim_{n\to +\infty} u_n = 1$.
 - (b) On pose pour tout $n \ge 1$, $u_n = 1 + \frac{1}{n}$. Vérifier que, pour tout $N \in \mathbb{N}^*$: $P_N = N + 1$. Le produit infini $\prod_{n \ge 1} \left(1 + \frac{1}{n}\right)$ est-il convergent?
 - (c) La condition obtenue à la question 1.(a) est-elle suffisante?
- 2. Un premier exemple de produit infini.

On pose pour tout $n \ge 2$, $u_n = 1 - \frac{1}{n^2}$.

Vérifier que, pour tout $N \ge 2$: $P_N = \prod_{n=2}^N \frac{\frac{n+1}{n}}{\frac{n}{n-1}}$.

Le produit infini $\prod_{n\geq 2} \left(1-\frac{1}{n^2}\right)$ est-il convergent ? Si oui donner la valeur de $\prod_{n=2}^{+\infty} \left(1-\frac{1}{n^2}\right)$.

- 3. Un second exemple.
 - (a) Soit a un réel différent de $p\pi$, pour tout $p \in \mathbb{Z}$.

On pose pour tout $N \in \mathbb{N}^*$: $P_N = \prod_{i=1}^N \cos\left(\frac{a}{2^n}\right)$.

Montrer que $P_N \times \sin\left(\frac{a}{2^N}\right) = \frac{1}{2^N}\sin(a)$.

Le produit infini $\prod_{n\geq 1} \cos\left(\frac{a}{2^n}\right)$ est-il convergent ? Si oui donner la valeur de $\prod_{n=1}^{+\infty} \cos\left(\frac{a}{2^n}\right)$.

(b) Vérifier que pour tout
$$n \ge 1$$
: $\cos\left(\frac{\pi}{2^{n+1}}\right) = \sqrt{\frac{1+\cos\left(\frac{\pi}{2^n}\right)}{2}}$. En déduire la formule suivante :

$$\frac{2}{\pi} = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2 + \sqrt{2}}}{2} \times \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \times \dots$$

Partie II: Liens entre produits infinis et séries.

4. Équivalence entre produits infinis et séries.

On suppose dans cette question (et seulement dans cette question) que $\lim_{n\to+\infty}u_n=1$.

- (a) Monter qu'il existe un entier $n_0 \in \mathbb{N}^*$ tel que : $\forall n \geq n_0, u_n > 0$.
- (b) On pose, pour tout $N \ge n_0$: $S_N = \sum_{n=n_0}^N \ln(u_n)$.

Établir que le produit infini $\prod_{n\geq n_0} u_n$ converge si et seulement si la série $\sum_{n\geq n_0} \ln(u_n)$

converge. Dans ce cas donner une formule reliant $\prod_{n=n_0}^{+\infty}u_n$ et $\sum_{n=n_0}^{+\infty}\ln(u_n)$.

5. Une condition nécessaire et suffisante de convergence dans un cas particulier. On suppose dans cette question (et seulement dans cette question) que, pour tout $n \in \mathbb{N}^*$, $u_n = 1 + v_n$, où $(v_n)_{n \in \mathbb{N}^*}$ est une suite de réels positifs qui converge vers 0.

- (a) Vérifier que : $\forall x \ge 0$, $\ln(1+x) \le x$.
- (b) En déduire que si la série $\sum_{n\geq 1}v_n$ converge, alors le produit infini $\prod_{n\geq 1}(1+v_n)$ converge.
- (c) Réciproquement, montrer que si le produit infini $\prod_{n\geq 1}(1+v_n)$ converge, alors la série $\sum_{n\geq 1}v_n \text{ converge}.$
- (d) Donner alors une nouvelle preuve de la divergence de la série $\sum_{n>1} \frac{1}{n}$.
- (e) Dans cette dernière question, on suppose que pour tout $n \in \mathbb{N}^*$, $u_n = 1 + v_n$, où $(v_n)_{n \in \mathbb{N}^*}$ est une suite de réels de l'intervalle]-1,0] qui converge vers 0. Montrer que le produit infini $\prod_{n \geq 1} (1+v_n)$ converge si et seulement si la série $\sum_{n \geq 1} v_n$ converge.

Partie III: Exemples non triviaux.

On utilisera les résultats de convergence de produits infinis établis dans les parties I et II.

6. Exemple 1.

Soit $\alpha > 0$. On pose pour tout $n \in \mathbb{N}^*$: $u_n = 1 + \alpha^{(2^n)}$.

- (a) Dans le cas où $\alpha \geq 1$, dire si le produit infini $\prod_{n\geq 1} \left(1+\alpha^{(2^n)}\right)$ est convergent ou divergent.
- (b) On suppose $\alpha \in]0,1[$. Déterminer $\lim_{n \to +\infty} n^2 \alpha^{(2^n)}$. En utilisant la question 5., en déduire que le produit infini $\prod_{n \geq 1} \left(1 + \alpha^{(2^n)}\right)$ est convergent.
- (c) Toujours pour $\alpha \in]0,1[$, et pour $N \in \mathbb{N}^*$, calculer $(1-\alpha^2)P_N$. En déduire la valeur de $\prod_{n=1}^{+\infty} \left(1+\alpha^{(2^n)}\right).$

2

7. Exemple 2.

Soit -1 < x < 1.

(a) Pour $N \ge 1$, vérifier que :

$$\prod_{n=1}^{2N} (1 - x^n) = \prod_{n=1}^{N} (1 - x^{2n-1}) \times \prod_{n=1}^{N} (1 - x^{2n})$$

et ensuite que :

$$\prod_{n=N+1}^{2N} (1-x^n) \times \prod_{n=1}^{N} \frac{1}{1-x^{2n-1}} = \prod_{n=1}^{N} (1+x^n)$$

(b) Justifier la convergence des produits infinis $\prod_{n\geq 1} \left(1+x^n\right)$ et $\prod_{n\geq 1} \frac{1}{1-x^{2n-1}}$ et la formule :

$$\prod_{n=1}^{+\infty} (1+x^n) = \prod_{n=1}^{+\infty} \frac{1}{1-x^{2n-1}}$$

8. Exemple 3.

- (a) Justifier la convergence du produit infini $\prod_{n>1} \left(1 \frac{1}{4n^2}\right)$.
- (b) Vérifer que, pour tout $N \ge 1$:

$$\prod_{n=1}^{N} \left(1 - \frac{1}{4n^2} \right) = \frac{(2N)! \times (2N+1)!}{(N!)^4 \times 2^{4N}}$$

(c) En admettant la formule de Stirling $N! \underset{N \to +\infty}{\sim} \sqrt{2\pi N} \times N^N \times \mathrm{e}^{-N}$, en déduire que :

$$\prod_{n=1}^{+\infty} \left(1 - \frac{1}{4n^2} \right) = \frac{2}{\pi}$$