Durée du devoir : 2h00.

Les calculatrices ne sont pas autorisées. Les exercices sont indépendants.

Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

EXERCICE 1: Calculs de limite

- 1. Déterminer $\lim_{x\to 0} \frac{1}{\cos(x)-1} + \frac{2}{x^2}$.
- 2. Déterminer $\lim_{t \to +\infty} t^2 (\sqrt{t^2 + t} \sqrt{t^2 t} 1)$ et $\lim_{t \to -\infty} t^2 (\sqrt{t^2 + t} \sqrt{t^2 t} 1)$.

EXERCICE 2 : Étude d'une suite récurrente

On veut étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=-2$ et $\forall n\in\mathbb{N}: u_{n+1}=-2+\frac{6}{3-u_n}$.

- 1. Écrire une fonction Python suite(n) qui, étant donné un entier naturel n, renvoie la valeur de u_n .
- 2. Comportement asymptotique de la suite $(u_n)_{n \in \mathbb{N}}$.

On considère la fonction f définie sur $]-\infty,3[$ par $: f(x) = -2 + \frac{6}{3-x}.$

- (a) Faire l'étude complète de f, et donner l'allure de sa courbe. On placera aussi sur le graphique les points fixes de f.
- (b) Utiliser le graphique pour conjecturer la monotonie et le comportement asymptotique de la suite $(u_n)_{n\in\mathbb{N}}$ (c'est-à-dire son éventuelle limite).
- (c) Montrer que : $\forall x < 0, f(x) < 0$. En déduire que la suite $(u_n)_{n \in \mathbb{N}}$ est bien définie et que : $\forall n \in \mathbb{N}, u_n < 0$
- (d) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$ et conclure sur sa limite.
- 3. Expression de u_n en fonction de n.

Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{u_n}{1 - u_n}$.

- (a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est bien définie.
- (b) Établir que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique, dont on précisera la raison.
- (c) En déduire l'expression de v_n puis de u_n en fonction de n.
- (d) Retrouver la limite calculée à la question 2.(d).

EXERCICE 3: Exponentielle d'une matrice

On note $\mathcal{M}_p(\mathbb{R})$ l'ensemble des matrices carrées réelles d'ordre $p \in \mathbb{N}^*$.

1. Cas d'une matrice nilpotente d'ordre 3.

Soit *p* un entier naturel non nul.

Une matrice A de $\mathcal{M}_p(\mathbb{R})$ est dite nilpotente d'indice 3 si elle vérifie $A^2 \neq 0_p$ et $A^3 = 0_p$. Dans cette question, on note A une matrice de $\mathcal{M}_p(\mathbb{R})$, nilpotente d'indice 3.

On note I_p la matrice identité d'ordre p.

Pour tout réel t, on note E(t) la matrice :

$$E(t) = I_p + t \cdot A + \frac{t^2}{2} \cdot A^2$$

- (a) Calculer E(0).
- (b) Vérifier la relation :

$$\forall (s,t) \in \mathbb{R}^2, \quad E(s) \times E(t) = E(s+t)$$

- (c) En déduire que $(E(t))^n = E(nt)$ pour $t \in \mathbb{R}$ et $n \in \mathbb{N}$.
- (d) A l'aide de 1.(a) et 1.(b), montrer que la matrice E(t) est inversible. Quel est son inverse?
- (e) Montrer que l'application $E: t \longrightarrow E(t)$, de \mathbb{R} vers $\mathcal{M}_p(\mathbb{R})$, est injective. Rappel: il s'agit de montrer que si $(s,t) \in \mathbb{R}^2$ est tel que E(s) = E(t), alors s = t.
- (f) **Exemple.** On prend p = 3 et $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Expliciter les coefficients de la matrice E(t) en fonction de $t \in \mathbb{R}$. On donnera la réponse sous forme d'un tableau matriciel.

2. Étude d'une matrice.

Soit la matrice $A = \begin{pmatrix} 4 & -6 \\ 1 & -1 \end{pmatrix}$ appartenant à $\mathcal{M}_2(\mathbb{R})$.

- (a) Montrer que $P = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$ est inversible et déterminer son inverse P^{-1} .
- (b) On pose $D = P^{-1} \times A \times P$. Montrer que D est une matrice diagonale.
- (c) Expliciter D^n pour tout n entier naturel.
- (d) En déduire l'expression de A^n sous forme de tableau matriciel.
- (e) i. Soit $M \in \mathcal{M}_2(\mathbb{R})$, vérifiant $M^2 = D$. Montrer que MD = DM et en déduire que M est diagonale. Quels peuvent être ses coefficients diagonaux?
 - ii. Soit $X \in \mathcal{M}_2(\mathbb{R})$.

En étudiant $M = P^{-1}XP$, déterminer le nombre de matrices X solutions de l'équation $X^2 = A$.

On ne demande pas de calculer explicitement les coefficients de X.

2

3. Exponentielle de la matrice A.

Dans cette question, A est la matrice étudiée à la question précédente.

On admettra le résultat suivant, valable pour tout réel t:

$$\lim_{n \to +\infty} \left(\sum_{k=0}^{n} \frac{t^k}{k!} \right) = \lim_{n \to +\infty} \left(1 + t + \frac{t^2}{2} + \dots + \frac{t^n}{n!} \right) = e^t$$

Pour tout réel t, pour tout entier naturel n, on note $E_n(t)$ la matrice définie par $E_n(t) = \sum_{k=0}^n \frac{t^k}{k!} A^k$.

On écrira cette matrice sous la forme $E_n(t) = \begin{pmatrix} a_n(t) & b_n(t) \\ c_n(t) & d_n(t) \end{pmatrix}$.

- (a) Expliciter (sous forme de sommes) ses coefficients $a_n(t)$, $b_n(t)$, $c_n(t)$, $d_n(t)$.
- (b) Pour tout $t \in \mathbb{R}$, on note E(t) la matrice $E(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$ avec $a(t) = \lim_{n \to +\infty} a_n(t)$, $b(t) = \lim_{n \to +\infty} b_n(t)$, $c(t) = \lim_{n \to +\infty} c_n(t)$ et $d(t) = \lim_{n \to +\infty} d_n(t)$. Expliciter les coefficients de la matrice E(t). Réponse partielle: on obtient $a(t) = 3e^{2t} 2e^t$.
- (c) Montrer qu'il existe deux matrices Q et R (carrées d'ordre deux) telles que :

$$\forall t \in \mathbb{R}, \quad E(t) = e^{2t}.Q + e^t.R$$

Expliciter Q et R.

- (d) Calculer les matrices Q^2 , R^2 , QR et RQ.
- (e) En déduire que :

$$\forall (s,t) \in \mathbb{R}^2, \quad E(s) \times E(t) = E(s+t)$$

Que dire que $(E(t))^n$ pour $n \in \mathbb{N}$? de $(E(t))^{-1}$? L'application $E: t \longrightarrow E(t)$ de \mathbb{R} vers $\mathcal{M}_2(\mathbb{R})$ est-elle injective?

BONUS

EXERCICE 4: À NE FAIRE QUE SI TOUT LE RESTE EST TERMINÉE

1. Calculer le DL à l'ordre 5 en 0 de :

$$f_1(x) = \frac{3\sin(x)}{2 + \cos(x)} \qquad f_2(x) = \frac{1}{3} \left(8\sin\left(\frac{x}{2}\right) - \sin(x) \right)$$

$$f_3(x) = \sqrt[3]{\sin^2(x)\tan(x)} \qquad f_4(x) = \frac{1}{3} \left(2\sin(x) + \tan(x) \right)$$

2. En déduire l'existence de $\eta > 0$ tel que :

$$\forall x \in]0, \eta[, f_1(x) < f_2(x < x < f_3(x) < f_4(x)$$