ANALYSE-PROBABILITES

Passer approximativement 2h sur cette partie.

La rendre <u>séparément</u> de la partie ALGEBRE.

Les copies des élèves qui ne rendront pas leur partie dans le bon « tas » ne seront pas corrigées.

La qualité et la précision de la rédaction de vos réponses seront fortement prises en compte dans la notation.

Questions de cours :

1. Soit $a \in \mathbb{C}$. Montrer que a série géométrique $\sum a^n$ est convergente ssi |a| < 1 et que dans ce cas :

$$\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}.$$

2. Si X est une VAR qui suit la loi $\mathcal{B}(n,p)$ alors démontrer que E(X)=np.

EXERCICE 1

Une urne contient deux boules noires et deux boules rouges distinguables.

On lance un dé équilibré à 4 faces et on note X le score obtenu.

On prélève ensuite simultanément X boules dans l'urne et on note Y le nombre de boules rouges obtenues.

1. Vérifier que la loi conjointe de (X, Y) est donnée par :

Y	1	2	3	4
0	1/8	1/24	0	0
1	1/8	1/6	1/8	0
2	0	1/24	1/8	1/4

- 2. Déterminer la loi de Y.
- 3. Déterminer la loi de X sachant que $\{Y = 2\}$.
- 4. Que vaut l'espérance de Y?

EXERCICE 2

Une urne contient des boules blanches en proportion $p \in]0,1[$ et des boules noires en proportion q=1-p. On procède à une suite de n tirages avec remise $(n \geq 3)$. On constitue ainsi des séries unicolores, au gré des couleurs obtenues dans la suite des n tirages.

Par exemple, pour n=9, la suite de résultats BBNBNNNBB fournit 5 séries unicolores : BB, puis N, puis B, puis NNN et enfin BB.

On fixe n un entier supérieur ou égal à 3 et on note X la variable aléatoire qui compte le nombre de séries unicolores obtenues à l'issue des n tirages. (Dans l'exemple précédent X prend la valeur 5.)

1. Donner $X(\Omega)$ et calculer $\mathbb{P}(X=1)$ et $\mathbb{P}(X=n)$.

Pour $i \ge 2$, on désigne par Y_i la variable aléatoire égale à 1 si on a obtenu une boule blanche au $(i-1)^{\text{ème}}$ tirage et une boule noire au $i^{\text{ème}}$ tirage, et égale à 0 sinon.

Symétriquement pour $j \ge 2$, on désigne par Z_j la variable aléatoire égale à 1 si on a obtenu une boule noire au $(j-1)^{\text{ème}}$ tirage et une boule blanche au $j^{\text{ème}}$ tirage, et égale à 0 sinon.

- 2. Pour i et j entiers naturels fixés supérieurs ou égal à 2, donner la loi de Y_i et de Z_j .
- 3. En déduire l'espérance de X.

EXERCICE 3

On note r_n le reste de la division euclidienne de n par 5. On pose, pour $n \in \mathbb{N}^*$, $a_n = \frac{r_n}{n(n+1)}$ et $S_n = \sum_{k=1}^n a_k$.

On pose aussi $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer que la série $\sum a_n$ converge.
- 2. Montrer que pour tout $n \ge 1$: $S_{5n} = H_{5n} H_n$.
- 3. On pose, pour $n \ge 2$, $w_n = \ln(n) \ln(n-1) \frac{1}{n}$.
 - (a) Montrer que $w_n = \frac{1}{n \to +\infty} \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$.
 - (b) Montrer que la série $\sum w_n$ converge.
 - (c) En déduire l'existence d'un réel γ tel que $H_n = \lim_{n \to +\infty} \ln(n) + \gamma + o(1)$.
- 4. On propose de rédémontrer le résultat de la question précédente avec une autre méthode.
 - (a) Pour $n \in \mathbb{N}^*$ montrer que $\frac{1}{n+1} \le \int_n^{n+1} \frac{\mathrm{d}t}{t} \le \frac{1}{n}$.
 - (b) En déduire que pour tout n entier naturel supérieur ou égal à 2:

$$\ln(n+1) \le H_n \le 1 + \ln(n)$$

- (c) Retrouver alors le résultat de la question 3.(c).
- 5. Avec les questions 1., 2. et 3.(c) conclure que $\sum_{n=1}^{+\infty} a_n = \ln(5)$.
- 6. Retrouver ce résultat à l'aide du théorème de la valeur moyenne pour les sommes de Riemann associées à une fonction continue.