CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

avec corrigés

V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Clenet, J. Esteban, M. Fructus, B. Harington, J.-P. Keller, M.-F. Lallemand, A. Lluel, J.-P. Logé, S. Moinier, P.-L. Morien, S. Pellerin, V. Rayssiguier, S. Rigal, A. Walbron et A. Warin

2014. CC BY-NC-SA 3.0 FR

Dernière mise à jour : le 11/05/15

Banque épreuve orale de mathématiques session 2015, CCP-MP

Introduction

L'épreuve orale de mathématiques des CCP, filière MP, se déroule de la manière suivante :

- 25mn de préparation sur table.
- 25mn de passage à l'oral.

Chaque sujet proposé est constitué de deux exercices :

- un exercice sur 8 points issu de la banque publique accessible sur le site http://ccp.scei-concours.fr
- un exercice sur 12 points.

Les deux exercices proposés portent sur des domaines différents.

Ce document contient les 112 exercices de la banque pour la session 2015 :

- 58 exercices d'analyse (exercice 1 à exercice 58).
- 37 exercices d'algèbre (exercice 59 à exercice 94).
- 18 exercices de probabilités (exercice 95 à exercice 112).

Dans l'optique d'aider les futurs candidats à se préparer au mieux aux oraux des CCP, chaque exercice de la banque est proposé, dans ce document, avec un corrigé.

Il se peut que des mises à jour aient lieu en cours d'année scolaire.

Cela dit, il ne s'agira, si tel est le cas, que de mises à jour mineures : reformulation de certaines questions pour plus de clarté, relevé d'éventuelles erreurs, suppression éventuelle de questions ou d'exercices.

Nous vous conseillons donc de vérifier, en cours d'année, en vous connectant sur le site :

http://ccp.scei-concours.fr

si une nouvelle version a été mise en ligne, la date de la dernière mise à jour figurant en haut de chaque page. Si tel est le cas, les exercices concernés seront signalés dans le présent document, page 3.

Remerciements à David DELAUNAY pour l'autorisation de libre utilisation du fichier source de ses corrigés des exercices de l'ancienne banque, diffusés sur son site http://mp.cpgedupuydelome.fr

NB : la présente banque intègre des éléments issus des publications suivantes :

 A. Antibi, L. d'Estampes et interrogateurs, Banque d'exercices de mathématiques pour le programme 2003-2014 des oraux CCP-MP, Éd. Ress. Pédag. Ouv. INPT, 0701 (2013) 120 exercices.

http://pedagotech.inp-toulouse.fr/130701

• D. Delaunay, Prépas Dupuy de Lôme, cours et exercices corrigés MPSI - MP, 2014. http://mp.cpgedupuydelome.fr

L'équipe des examinateurs de l'oral de mathématiques des CCP, filière MP.

Contact : Valérie BELLECAVE, coordonnatrice des oraux de mathématiques des CCP, filière MP. vbellecave@gmail.com

Mise à jour : 11/05/15

CC BY-NC-SA 3.0 FR Page 2

MISES À JOUR :

```
mise à jour du 21/09/14:
exercice 5 corrigé 2. ( 3 dernières lignes).
mise à jour du 25/11/14:
exercice 1 : énoncé et corrigé 1. notation des suites modifiée.
exercice 5 : corrigé 1. modification de la majoration (pour qu'elle soit valable pour n \ge 2) et corrigé 2. ligne 7
 (équivalent de u_n).
exercice 7 : énoncé (notation de la série de fonctions et i changé en i)) et corrigé 1.
exercice 8 : corrigé 1, ligne 6.
 exercice 9 : énoncé notation suite de fonctions modifié et corrigé 2.b. \mathbb{R} changé en [0; +\infty[.
 exercice 15 : corrigé 2. complété.
 exercice 16 : corrigé 1. dernière ligne rajoutée.
 exercice 22 : corrigé 1. distinction R_a \neq 0 et R_a > 0.
 exercice 23 : corrigé 1. dernière ligne.
 exercice 29 : :corrigé 3. rajout en fin de question.
 exercice 34: corrigé 2. troisième ligne a changé en x.
exercice 39 : énoncé (ordre des questions modifié) et corrigé 4, rajout de la comparaison F et (F^{\perp})^{\perp}.
exercice 41 : corrigé 2. changé et rajout d'une remarque en fin de corrigé.
exercice 55 : corrigé 1, souci de notations.
exercice 66 : corrigé 3. second bloc \overline{k} \neq 0 changé en \overline{k} \neq \overline{0}.
exercice 67 : corrigé troisième cas \chi_A(X) changé en \chi_M(X).
exercice 72 : corrigé fonction nulle changée en endomorphisme nul (deux fois).
 exercice 93 : supprimé.
 Attention: par conséquent, la numérotation des exercices suivants est modifiée.
 exercice 100 (ancien exercice 101) : énoncé k changé en n.
mise à jour du 08/01/15 :
exercice 75 corrigé question 2. : vecteur ligne (2,-1) remplacé par vecteur colonne \begin{pmatrix} 2\\1 \end{pmatrix}
exercice 94 corrigé : suppression du 3.c.
exercice 101 énoncé : t=0 remplacé par t=0, modification des espaces autour des guillemets.
 exercice 101 corrigé question 1. : rajout de "d'après la formule des probabilités totales".
exercice 102 fin du corrigé : \sum_{n\leqslant 1} remplacé par \sum_{n\geqslant 1}.

exercice 108 corrigé 1. : loi de Y:\sum_{i\geqslant 0}^{+\infty}\left(\frac{1}{2}\right)^i changée en \sum_{i\geqslant 0}\left(\frac{1}{2}\right)^i.
exercice 111 énoncé : p \in ]-1;1[ remplacé par p \in ]0;1[.
mise à jour du 17/03/15 :
 exercice 52 énoncé : reformulé pour préciser que \alpha=0 pour l'étude des dérivées partielles et de l'aspect C^1 de f.
 exercice 97 : suppression de la première ligne de l'énoncé.
 exercice 102 : énoncé Y(\omega) = \min(X_1(\omega), \dots, X_n(\omega)) changé en Y(\omega) = \min(X_1(\omega), \dots, X_N(\omega)).
 exercice 102 : corrigé 2.b modifié : on reconnait une loi géométrique.
exercice 103 : corrigé question 1.a. : rajout d'une remarque.
exercice 105 : corrigé 2.c. interprétation reformulée.
exercice 108 corrigé 2.b : E(X) et V(X) remplacés par E(Y) et V(Y).
 mise à jour du 28/04/15 :
Dans tous les exercices, ker a été remplacé par Ker.
exercice 3 énoncé question 2. : f^n changé en f^{(n)}.
exercice 3 corrigé 3. : f^{(n-k)}q^{(k)}(x) changé en f^{(n-k)}(x)q^{(k)}(x) et c'est à dire en c'est-à-dire.
exercice 4 corrigé 3. : un point devant le mais changé en une virgule.
exercice 5 énoncé 3. : n \ge 3 changé en n \ge 2.
exercice 5 corrigé 2. 4<sup>ième</sup> ligne : vosinage changé en voisinage.
```

Mise à jour : 11/05/15

```
exercice 6 corrigé 1. 6<sup>ième</sup> ligne : rajout d'un donc.
exercice 7 énoncé : notation des suites modifiée.
exercice 8 corrigé : notation des suites changée en remplaçant par exemple (S_n) en (S_n)_{n\in\mathbb{N}}
exercice 8 corrigé : c'est à dire changé en c'est-à-dire.
exercice 9 : (f_n)_{n\in\mathbb{N}} changé en (f_n).
exercice 9 corrigé 2.c : ? remplacé par un point.
exercice 10 énoncé : (f_n)_{n\in\mathbb{N}} changé en (f_n).
exercice 11 énoncé : (f_n)_{n\in\mathbb{N}} changé en (f_n).
exercice 13 : énoncé 2. modifié pour notation correcte de la suite de fonctions et pout changé en pour.
exercice 14 énoncé : (f_n)_{n\in\mathbb{N}} changé en (f_n).
exerccie 15 énoncé : rajout de "celle".
exercice 16 corrigé 1. : S'(x) = \sum_{n=0}^{+\infty} u_n'(x) changé en S'(x) = \sum_{n=1}^{+\infty} u_n'(x).
exercie 20 corrigé : quelques petits rajouts et modifications de notations.
exercice 21 corrigé: modifications de notations et rajouts.
exercice 22 corrigé avant dernière ligne : comverge changé en converge.
exercice 27 énoncé et corrigé : dx changé en dx et (f_n)_{n\in\mathbb{N}^*} changé en (f_n).
exercice 29 corrigé : ln(t) changé en (ln t).
exercice 30 corrigé : mise en évidence par iii) de l'hypothèse de domination.
exercice 32 corrigé : complété.
exercice 34 corrigé : 2. reformulé et 3. notations des suites modifiée.
exercice 35 : notation des suites modifiée.
exercice 36 énoncé : précisions apportées sur les normes.
exercice 36 corrigé : rajout de dt dernière ligne.
exercice 37 énoncé et corrigé : harmonisation des variables (tout modifié en t) et rajout d'un \lambda pour la norme N_1.
exercice 38 corrigé 1.a. :\forall i \in [1, n] changé en \forall i \in [0, n].
exercice 39 énoncé et corrigé : modification des notations des suites et \sum_{n=1}^{+\infty} x_n^2 changé en \sum_{n=1}^{+\infty} x_n^2.
exercice 41 corrigé 4. : "deux" supprimé.
exercice 43 corrigé : complété et un arctan changé en Arctan.
exercice 44 corrigé : modification des notations des suites.
exercice 45 corrigé : modification des notations des suites.
exercice 47 énoncé : élément dx changé en dx.
exercice 47 énoncé et corrigé : élément dx changé en dx, arctan changé en Arctan et quelques notations.
exercice 48 énoncé et corrigé : modification des notations des suites de fonctions et élément dx changé en dx.
C([0,1],\mathbb{R}) changé én C^{0}([0,1],\mathbb{R}) (dans le corrigé).
exercice 49 énoncé et corrigé : élément dx changé en dx.
exercice 50 : élément dx changé en dx, \lim_{t \to +\infty} t^2 \varphi(t) = 0 changé en \lim_{t \to +\infty} t^2 \varphi(t) = 0 et corrigé complété. exercice 51 corrigé : fraction \frac{u_{n+1}}{u_n} simplifiée. exercice 54 corrigé 2.(a) : (u_n) changé en (u_n)_{n \in \mathbb{N}}.
exercice 55 corrigé : modification des notations des suites et i changé en i.
exercice 56: élément dt changé en dt.
exercice 57 corrigé 2.(b): rajout de parenthèses sur certains couples.
exercice 58 corrigé : complété.
exercice 61 corrigé 2. dernière ligne : p changé en p+1.
exercice 63 corrigé : notation de la suite (D_n) modifiée.
exercice 64 corrigé 2.(b) : C'est à dire changé en c'est-à-dire.
exercice 68 corrigé : E_3(A) = \text{Vect}(1, -1, 1) changé en E_3(A) = \text{Vect}\left(\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}\right)
exercice 72 corrigé remarque : x = x_1e_1 + x_2e_2 + \dots + x_ne_n changé en v = x_1e_1 + x_2e_2 + \dots + x_ne_n.
exercice 73 énoncé et corrigé : I2 changé en I2.
exercice 74 corrigé : I<sub>2</sub> changé en I<sub>2</sub>.
```

CC BY-NC-SA 3.0 FR Page 3 CC BY-NC-SA 3.0 FR Page 4

exercice 19 énoncé 2. : rajout de :.

Page 6

```
exercice 75 corrigé : I<sub>2</sub> changé en I<sub>2</sub>.
exercice 76:dt changé en dt.
exercice 78 corrigé : soient changé en soit et c'est à dire en c'est-à-dire.
exercice 79 corrigé : c'est à dire en c'est-à-dire, commutatitivité en commutativité et dans la question 2., variable t
changée en x.
exercice 80 corrigé: nom des variables homogénéisé avec l'énoncé et commutatitivité changé en commutativité.
exercice 81 corrigé : typo modifiée pour I_2 en I_2 et autres soucis de typo.
exercice 81 corrigé : changement de notations dans 1.
exercice 84 : i changé en i.
exercice 86 énoncé : b. modifiée.
exercice 89:i changé en i.
exercice 91 corrigé : I_2 changé en I_2.
exercice 92 : énoncé 2. modifié et dans le corrigé 1., distibutivité changé en distributivité.
exercice 92 corrigé 3. : tels changé en telles.
exercice 95 énoncé : tir changé en tirage.
exercice 96 corrigé : corrigé complété.
exercice 97 corrigé : rajout d'une parenthèse ligne 3 et de n=0 au lieu de 0 ligne 1.
exercice 98 énoncé 1, modifié.
exercice 99 énoncé : rajouté d'un trait d'union pour Bienaymé-Tchebychev.
exercice 101 corrigé : correction d'un souci de numérotation 2.(d) changé en 3 et dernière ligne du corrigé, matrice
A^n modifiée.
exercice 101 corrigé : I_2 changé en I_2.
exercice 102 énoncé : \mathcal{T} changé en \mathcal{A}.
exercice 103 corrigé : notation de la loi de Poisson modifée.
exercice 104 énoncé : "elles viennent se ranger" modifié en "elles viennent toutes se ranger".
exercice 104 corrigé : rajout de ponctuation.
exercice 105 énoncé : question 1. complétée en pour un système complet d'événements.
exerccie 105 corrigé 2.(a) et 2.(b) : p(T) changé en P(T) à deux reprises.
exercice 110 énoncé 2.(b) : énoncé modifié.
exercice 112 corrigé : ligne 2 rajout de parenthèses autour de \mathcal{P}(E)
mise à jour du 04/05/15 :
exercice 2 énoncé : précisez changé en préciser.
exercice 3 énoncé : n^{\text{ème}} changé en n^{\text{ième}}
exercice 16 énoncé : calculez changé en calculer.
exercice 22 énoncé rayon cahngé en rayon de convergence.
exercice 24 énoncé : précisez changé en préciser.
exercice 68 énoncé et corrigé : I<sub>3</sub> changé en I<sub>3</sub>.
exercice 69 corrigé : I<sub>3</sub> changé en I<sub>3</sub>.
exercice 70 corrigé :I<sub>3</sub> changé en I<sub>3</sub>.
exercice 71 énoncé : soit p, la projection changé en soit p la projection.
exercice 82 énoncé : calculez changé en calculer.
exerccie 86 énoncé 1.a : rajout de : .
exercice 99 énoncé et corrigé : i<sup>ième</sup> changé en i<sup>ème</sup>.
exercice 109 corrigé : i<sup>ème</sup> changé en i<sup>ième</sup>.
mise à jour du 11/05/15 :
les majuscules ont été enlevées derrière :
Les majuscules ont été accentuées dans les sujets où il a été repéré que ça n'était pas le cas.
exercice 32:
énoncé 1. : Trouver les solutions de cette équation différentielle développables en série entière à l'origine en
Trouver les solutions de cette équation différentielle développables en série entière sur un intervalle ]-r,r[ de \mathbb{R}.
énoncé 2. changé en est-ce que toutes les solutions de x(x-1)y'' + 3xy' + y = 0 sur ]0;1[ sont les restrictions d'une
fonction développable en série entière sur ]-1,1[?]
exercice 4 énoncé : rajout d'un point et uniformisation des notations des intervalles.
exercice 7 énoncé : fin changée en Remarque : i désigne le nombre complexe de carré égal à -1.
exercice 12 énoncé : quantificateur changé en pour tout.
```

Mise à jour : 11/05/15

```
exercice 20 énoncé 2. calculer changé en déterminer.
 exercice 24 énoncé : dans la définition de f, pour changé en si.
 exercice 25 énoncé: 1. pour tout entier changé en pour tout entier naturel.
 2. rajout de Pour tout n \in \mathbb{N}.
 exercice 26 énoncé : pour tout n \ge 1 changé en pour tout entier n \ge 1.
 exercice 27 énoncé : début changé en pour tout n \in \mathbb{N}^* (suppression du quantifiacateur) et notation des intervalles
 uniformisée.
 exercice 28 énoncé : N.B changé en N.B.
 exerccie 29 énoncé : des virgules changées en : et uniformisation des notations des intervalles.
 exercice 30 énoncé : bornes de l'intégrale "mal placées". rectifié.
 exercice 33 énoncé : début modifié en On pose : \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, f(x,y) = \frac{xy}{\sqrt{x^2+y^2}} et f(0,0) = 0.
 exercice 35 énoncé 2. : allégé car des répétitions.
exercice 36 énoncé : E,F changé en E et F et : rajouté sur P_3 après tel que.
 exercice 37 énoncé : on pose, changé en on pose :.
 exercice 38 énoncé : début changé en on note \mathbb{R}[X] l'espace vectoriel des polynômes à coefficients réels.
On pose : \forall P \in \mathbb{R}[X], N_1(P) = \sum_{i=0}^n |a_i| et N_{\infty}(P) = \max_{0 \le i \le n} |a_i| où P = \sum_{i=0}^n a_i X^i avec n \geqslant \deg P. exercice 39 énoncé 3. : \mathbb{C} changé en \mathbb{R}.
exercice 40 énoncé : un : rajouté derrière on suppose que et u de A changé en u \in A.
 exercice 41 énoncé : ponctuation modifiée.
 exercice 42 énoncé : équation changé en équation différentielle et rajout d'une virgule.
 exercice 43 énoncé : rajout de deux virgules.
 exercice 44 énoncé : rajout de : après montrer que (3 fois) et rajout de virgules.
 exercice 45 énoncé : E, A et \overline{A} introduits avant 1. , : rajouté après on pose, \Rightarrow changé en \Longrightarrow et dans 2.(b) rajout
 exercice 47 énoncé : Soit f une fonction continue sur [0,1] changé en soit f une fonction continue sur [0,1]. à
 valeurs dans R et quel est le sens géométrique changé en quelle est l'interprétation géométrique?
 exercice 48 énoncé : telle que, changé en telle que : et notation de l'intégrale dans c. rectifiée.
 exercice 49 énoncé : e changé en e, question 3.a, quantificateur changé en pour tout...et intégrale changée en
 exercice 50 énoncé : Soit x \in \mathbb{R} supprimé.
exercice 51 énoncé : remarque mise en gras.
 exercice 52 énoncé :
 présentation de la définition de f changée en Soit \alpha \in \mathbb{R}.
On considère l'application définie sur \mathbb{R}^2 par f(x,y) = \begin{cases} \frac{y^4}{x^2 + y^2 - xy} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}
 3.a et 3.b : formulation légérement revue.
 exercice 53 énoncé : 1.a. : rajouté.
 exercice 54 énoncé : des : rajoutés ( trois fois) et notation de la norme modifiée.
 exercice 55 énoncé : suppression des parenthèses autour de \mathbb{C}^2.
 exercice 57 énoncé : notation des guillemets modifiée.
 exercice 58 énoncé : notation des guillemets modifiée.
 exercice 79 énoncé : on pose, changé en on pose :.
 exercice 81 énoncé : première ligne reformulée.
 exercice 92 énoncé : on pose, changé en on pose :.
 exercice 98 énoncé : rajout d'un espace entre p et (p \in ...), Z changé en Z.
 exercice 99 énoncé : accent aigu sur le A changé en accent grave.
exercice 100 énoncé : R(x)=\frac{1}{x(x+1)(x+2)} changé en R(x)=\frac{1}{x(x+1)(x+2)}
 exercice 101 énoncé : rajout d'un espace avant B, guillemets changés en guillemets à la française, sans claculs
 chagé en sans calcul.
 exercice 102 énoncé : suppression du point derrière Y = \min_{X \in \mathcal{X}_i} (X_i).
```

exercice 103 : suivent une loi de Poisson changé en suivent des lois de Poisson, $\forall m \in \mathbb{N}$ changé en pour tout $m \in \mathbb{N}$, (Ω, A) changé en (Ω, A, P) .

exercice 107 énoncé : dernière phrase avant 1. changée en Pour tout $n \in \mathbb{N}^*$, on note B_n l'événement « la boule tirée au $n^{\text{ième}}$ tirage est blanche » et on pose $p_n = P(B_n)$.

Mise à jour : 11/05/15

exercice $105 : \frac{1}{2}$ changé en $\frac{1}{2}$.

exercice 108 énoncé : première phrase modifiée en :

Soient X et Y deux variables aléatoires définies sur un même espace probabilisé (Ω, \mathcal{A}, P) et à valeurs dans \mathbb{N} . On suppose que la loi du couple (X, Y) est donnée par :...

2.(b): Y changé en Y.

exercice 110 énoncé :

- 1.(a) R changé en R_X, alors supprimé.
- 1.(b) modifié en : exprimer, en justifiant la réponse,...
- 2.(a), suppression du quantificateur
- 2.(b) changé en des lois de Poisson de paramètres....

exercice 111 énoncé : rajout devant la formule de la loi du couple $\forall (k, n) \in \mathbb{N}^2$.

exercice 112 énoncé : un point en trop à la fin supprimé.

CC BY-NC-SA 3.0 FR Page 7 CC BY-NC-SA 3.0 FR Page 8

BANQUE ANALYSE

EXERCICE 1 analyse

Énoncé exercice 1

1. On considère deux suites numériques $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $(v_n)_{n\in\mathbb{N}}$ est non nulle à partir d'un certain rang et $u_n \underset{+\infty}{\sim} v_n$.

Démontrer que u_n et v_n sont de même signe à partir d'un certain rang.

2. Déterminer le signe, au voisinage de l'infini, de : $u_n = \operatorname{sh}\left(\frac{1}{n}\right) - \tan\left(\frac{1}{n}\right)$

Corrigé exercice 1

1. Par hypothèse, $\exists N_0 \in \mathbb{N}/\forall n \in \mathbb{N}, n \geqslant N_0 \Longrightarrow v_n \neq 0$.

Ainsi la suite
$$\left(\frac{u_n}{v_n}\right)$$
 est définie à partir du rang N_0 .
De plus, comme $u_n \underset{+\infty}{\sim} v_n$, on a $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

De plus, comme
$$u_n \underset{+\infty}{\sim} v_n$$
, on a $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$

Alors,
$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}/N \geqslant N_0$ et $\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \left| \frac{u_n}{v_n} - 1 \right| \leqslant \varepsilon$. (1)

Prenons $\varepsilon = \frac{1}{2}$. Fixons un entier N vérifiant (1).

Ainsi,
$$\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \left| \frac{u_n}{v_n} - 1 \right| \leqslant \frac{1}{2}$$

$$\begin{split} & \text{Ainsi,} \ \forall \ n \in \mathbb{N}, n \geqslant N \Longrightarrow \left| \frac{u_n}{v_n} - 1 \right| \leqslant \frac{1}{2}. \\ & \text{C'est-$\^{a}$-dire,} \ \forall \ n \in \mathbb{N}, n \geqslant N \Longrightarrow -\frac{1}{2} \leqslant \frac{u_n}{v_n} - 1 \leqslant \frac{1}{2}. \end{split}$$

On en déduit que
$$\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \frac{u_n}{v_n} \geqslant \frac{1}{2}$$
.

Et donc,
$$\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \frac{u_n}{v_n} > 0$$

Et donc, $\forall\,n\in\mathbb{N},n\geqslant N\Longrightarrow \frac{u_n}{v_n}>0.$ Ce qui implique que u_n et v_n sont de même signe à partir du rang N.

2. Au voisinage de
$$+\infty$$
, $\operatorname{sh}(\frac{1}{n}) = \frac{1}{n} + \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)$ et $\tan\frac{1}{n} = \frac{1}{n} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)$. Donc $u_n \approx -\frac{1}{6n^3}$. On en déduit, d'après 1., qu'à partir d'un certain rang, u_n est négatif.

EXERCICE 2 analyse

Énoncé exercice 2

On pose $f(x) = \frac{1}{(x+1)^2(3-x)}$

- 1. Décomposer f(x) en éléments simples et en déduire la primitive G de f définie sur l'intervalle]-1;3[telle
- 2. Déterminer le développement en série entière en 0 de la fonction f et préciser le rayon de convergence.
- 3. Déduire de ce développement la valeur de $G^{(3)}(0)$

Corrigé exercice 2

On pose $f(x) = \frac{1}{(x+1)^2(3-x)}$

1. En utilisant les méthodes habituelles de décomposition en éléments simples, on trouve :
$$f(x) = \frac{1}{16} \times \frac{1}{x+1} + \frac{1}{4} \times \frac{1}{(x+1)^2} + \frac{1}{16} \times \frac{1}{3-x}.$$

$$F(x) = \frac{1}{16} \ln \left(\frac{x+1}{3-x} \right) - \frac{1}{4} \times \frac{1}{(x+1)} + C \text{ avec } C \in \mathbb{R}.$$

De plus,
$$F(1) = 0 \iff C = \frac{1}{9}$$

Donc,
$$\forall x \in]-1; 3[, G(x) = \frac{1}{16} \ln \left(\frac{x+1}{3-x} \right) - \frac{1}{4} \times \frac{1}{(x+1)} + \frac{1}{8}.$$

2. D'après le cours, $x\longmapsto \frac{1}{x+1}$ et $x\longmapsto \frac{1}{(x+1)^2}$ sont développables en série entière à l'origine

Le rayon de convergence de ces deux développements en série entière vaut 1. (1)

On a
$$\forall x \in]-1, 1[, \frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n.$$

Et, $\forall x \in]-1,1[$, $\frac{1}{(1+x)^2} = \sum_{n=1}^{+\infty} (-1)^{n+1} nx^{n-1}$ (obtenu par dérivation du développement précédent)

Enfin,
$$\frac{1}{3-x} = \frac{1}{3\left(1-\frac{x}{3}\right)}$$

Donc $x \mapsto \frac{1}{3-x}$ est développable en série entière à l'origine.

Le rayon de son développement en série entière vaut 3. (2)

Et, on a
$$\forall x \in]-3; 3[, \frac{1}{3-x} = \frac{1}{3} \sum_{n=0}^{+\infty} \frac{x^n}{3^n}]$$

On en déduit que f est développable en série entière.

On note R le rayon de convergence de ce développement en série entière.

D'après (1) et (2), $R \ge 1$.

Or
$$\lim_{x \to -1} |f(x)| = +\infty$$
 donc $R \le 1$.
Donc $R = 1$.

Donc
$$R=1$$

Et
$$\forall x \in]-1;1[, f(x) = \frac{1}{16} \sum_{n=0}^{+\infty} (-1)^n x^n + \frac{1}{4} \sum_{n=0}^{+\infty} (-1)^n (n+1) x^n + \frac{1}{16} \times \frac{1}{3} \sum_{n=0}^{+\infty} \frac{x^n}{3^n}.$$

C'est-à-dire
$$\forall x \in]-1; 1[, f(x) = \sum_{n=0}^{+\infty} \left(\frac{(-1)^n}{16} + \frac{(-1)^n(n+1)}{4} + \frac{1}{16 \times 3^{n+1}}\right) x^n.$$

3. D'après le cours, les coefficients d'un développement en série entière sont ceux de la série de Taylor associée.

Donc, si on pose
$$\forall n \in \mathbb{N}, \ a_n = \frac{(-1)^n}{16} + \frac{(-1)^n(n+1)}{4} + \frac{1}{16 \times 3^{n+1}}, \ \text{alors}, \ \forall \ n \in \mathbb{N}, \ a_n = \frac{f^n(0)}{n!}.$$

Ainsi,
$$G^{(3)}(0) = f^{(2)}(0) = 2!a_2 = 2 \times \left(\frac{1}{16} + \frac{3}{4} + \frac{1}{16 \times 27}\right) = \frac{44}{27}$$

EXERCICE 3 analyse

Énoncé exercice 3

1. On pose $g(x) = e^{2x}$ et $h(x) = \frac{1}{1+x}$

Calculer, pour tout entier naturel k, la dérivée d'ordre k des fonctions g et h sur leurs ensembles de

2. On pose $f(x) = \frac{e^{2x}}{1 + x}$

En utilisant la formule de Leibniz, concernant la dérivée $n^{\text{ième}}$ d'un produit de fonctions, déterminer, pour tout entier naturel n et pour tout $x \in \mathbb{R} \setminus \{-1\}$, la valeur de $f^{(n)}(x)$.

3. Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question précédente.

Corrigé exercice 3

1. g est de classe C^{∞} sur \mathbb{R} et h est de classe C^{∞} sur $\mathbb{R}\setminus\{-1\}$.

On prouve, par récurrence, que :

$$\forall x \in \mathbb{R}, g^{(k)}(x) = 2^k e^{2x} \text{ et } \forall x \in \mathbb{R} \setminus \{-1\}, h^{(k)}(x) = \frac{(-1)^k k!}{(1+x)^{k+1}}$$

2. g et h sont de classe C^{∞} sur $\mathbb{R}\setminus\{-1\}$ donc, d'après la formule de Leibniz, f est de classe C^{∞} sur $\mathbb{R}\setminus\{-1\}$

$$f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} g^{(n-k)}(x) h^{(k)}(x) = \sum_{k=0}^{n} \binom{n}{k} 2^{n-k} e^{2x} \frac{(-1)^k k!}{(1+x)^{k+1}} = n! e^{2x} \sum_{k=0}^{n} \frac{(-1)^k 2^{n-k}}{(n-k)!(1+x)^{k+1}}$$

Si $f:I\to\mathbb{R}$ et $g:I\to\mathbb{R}$ sont n fois dérivables sur I alors, fg est n fois dérivable sur I et :

$$\forall x \in I, (fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x)g^{(k)}(x).$$

Prouvons que (P_n) est vraie par récurrence sur n.

La propriété est vraie pour n=0 et pour n=1 (dérivée d'un produit)

Supposons la propriété vraie au rang $n \ge 0$.

Soit $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions n+1 fois dérivables sur I.

Les fonctions f et g sont, en particulier, n fois dérivables sur I et donc par hypothèse de récurrence la

fonction
$$fg$$
 l'est aussi avec $\forall x \in I$, $(fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x)$

Pour tout $k \in \{0, \dots, n\}$, les fonctions $f^{(n-k)}$ et $g^{(k)}$ sont dérivables sur I donc par opération sur les fonctions dérivables, la fonction $(fq)^{(n)}$ est encore dérivable sur I.

Ainsi la fonction fg est (n+1) fois dérivable et :

$$\forall\,x\in I, (fg)^{(n+1)}(x)=\sum_{k=0}^n\binom{n}{k}\left(f^{(n+1-k)}(x)g^{(k)}(x)+f^{(n-k)}(x)g^{(k+1)}(x)\right).$$

En décomposant la somme en deux et en procédant à un décalage d'indice sur la deuxième somme, on

obtient :
$$\forall x \in I$$
, $(fg)^{(n+1)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n+1-k)}(x) g^{(k)}(x) + \sum_{k=1}^{n+1} \binom{n}{k-1} f^{(n+1-k)}(x) g^{(k)}(x)$.

$$(fg)^{(n+1)}(x) = \sum_{k=1}^{n} \left(\binom{n}{k} + \binom{n}{k-1} \right) f^{(n+1-k)}(x) g^{(k)}(x) + \binom{n}{0} f^{(n+1)}(x) g^{(0)}(x) + \binom{n}{n} f^{(0)}(x) f^{(n+1)}(x).$$

Or, en utilisant le triangle de Pascal, on a $\binom{n}{l} + \binom{n}{l-1} = \binom{n+1}{l}$

On remarque également que $\binom{n}{0} = 1 = \binom{n+1}{0}$ et $\binom{n}{n} = 1 = \binom{n+1}{n+1}$

On en déduit que $(fg)^{(n+1)}(x) = \sum_{k=0}^{n+1} {n+1 \choose k} f^{(n+1-k)}(x)g^{(k)}(x)$.

Donc (P_{n+1}) est vraie.

Mise à jour : 11/05/15

Mise à jour : 11/05/15

EXERCICE 4 analyse

Énoncé exercice 4

- Énoncer le théorème des accroissements finis.
- 2. Soit $f:[a,b] \longrightarrow \mathbb{R}$ et soit $x_0 \in [a,b[$. On suppose que f est continue sur [a,b] et que f est dérivable sur $[a,x_0]$ et sur $[x_0,b]$. Démontrer que, si f' admet une limite en x_0 , alors f est dérivable en x_0 et $f'(x_0) = \lim_{x \to \infty} f'(x)$.
- 3. Prouver que l'implication : $(f \text{ est dérivable en } x_0) \Longrightarrow (f' \text{ admet une limite finie en } x_0) \text{ est fausse.}$ **Indication** : on pourra considérer la fonction g définie par : $g(x) = x^2 \sin \frac{1}{x}$ si $x \neq 0$ et g(0) = 0.

Corrigé exercice 4

1. Théorème des accroissements finis :

Soit $f:[a,b] \longrightarrow \mathbb{R}$.

On suppose que f est continue sur [a,b] et dérivable sur [a,b]Alors $\exists c \in [a, b]$ tel que f(b) - f(a) = f'(c)(b - a).

2. On pose $l = \lim_{x \to x_0} f'(x)$. Soit $h \neq 0$ tel que $x_0 + h \in [a, b]$.

En appliquant le théorème des accroissements finis, à la fonction f, entre x_0 et $x_0 + h$, on peut affirmer qu'il existe c_h strictement compris entre x_0 et $x_0 + h$ tel que $f(x_0 + h) - f(x_0) = f'(c_h)h$.

Quand $h \to 0$ (avec $h \neq 0$), on a, par encadrement, $c_h \to x_0$.

Donc $\lim_{h\to 0} \frac{1}{h} \left(f(x_0+h) - f(x_0) \right) = \lim_{h\to 0} f'(c_h) = \lim_{x\to x_0} f'(x) = l.$ On en déduit que f est dérivable en x_0 et $f'(x_0) = l$.

3. La fonction q proposée dans l'indication est évidemment dérivable sur $]-\infty,0[$ et $]0,+\infty[$. g est également dérivable en 0 car $\frac{1}{h}(g(h)-g(0))=h\sin\left(\frac{1}{h}\right)$

$$\operatorname{Or} \lim_{\substack{h \to 0 \\ h \neq 0}} h \sin \left(\frac{1}{h}\right) = 0 \operatorname{car} |h \sin \left(\frac{1}{h}\right)| \leqslant |h|.$$

Donc, q est dérivable en 0 et q'(0) = 0.

Cependant, $\forall x \in \mathbb{R} \setminus \{0\}, g'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$

 $2x\sin\left(\frac{1}{x}\right)\xrightarrow[x\to 0]{}0 \ (\text{car} \ |2x\sin(\frac{1}{x})|\leqslant 2|x|), \ \text{mais} \ x\longmapsto \cos\left(\frac{1}{x}\right) \ \text{n'admet pas de limite en } 0.$ Donc q' n'a pas de limite en 0.

EXERCICE 5 analyse

Énoncé exercice 5

Mise à jour : 11/05/15

- 1. On considère la série de terme général $u_n = \frac{1}{n (\ln n)^{\alpha}}$ où $n \ge 2$ et $\alpha \in \mathbb{R}$.
- (a) Cas $\alpha \leq 0$

En utilisant une minoration très simple de u_n , démontrer que la série diverge.

(b) Cas $\alpha > 0$

Étudier la nature de la série.

Indication: on pourra utiliser la fonction f définie par $f(x) = \frac{1}{x(\ln x)^{\alpha}}$

2. Déterminer la nature de la série $\sum_{n>2} \frac{\left(\mathrm{e}-\left(1+\frac{1}{n}\right)^n\right)\mathrm{e}^{\frac{1}{n}}}{\left(\ln(n^2+n)\right)^2}.$

Corrigé exercice 5

1. (a) Cas $\alpha \leq 0$

 $\forall n \geqslant 2$, $\ln n \geqslant \ln 2$ donc $(\ln n)^{\alpha} \leqslant (\ln 2)^{\alpha}$. On en déduit que : $\forall n \geqslant 2$, $u_n \geqslant \frac{1}{(\ln 2)^{\alpha}} \frac{1}{n}$.

Or $\sum \frac{1}{n}$ diverge.

Donc , par critère de minoration pour les séries à termes positifs, on en déduit que $\sum u_n$ diverge.

La fonction $f: x \mapsto \frac{1}{x(\ln x)^{\alpha}}$ est décroissante et positive sur $[2; +\infty[$ donc :

 $\sum f(n)$ et $\int_{2}^{+\infty} f(x) dx$ sont de même nature.

Puisque $\int_{0}^{X} f(x) dx = \int_{1-\alpha}^{\ln(X)} \frac{dt}{t^{\alpha}}$, on peut affirmer que : $\int_{0}^{+\infty} f(x) dx$ converge $\iff \alpha > 1$.

On en déduit que : $\sum_{n\geqslant 2}f(n)$ converge $\iff \alpha>1.$

2. On pose, pour tout entier naturel $n \ge 2$, $u_n = \frac{\left(e - \left(1 + \frac{1}{n}\right)^n\right)e^{\frac{1}{n}}}{\left(\ln(n^2 + n)\right)^2}$.

$$e - \left(1 + \frac{1}{n}\right)^n = e - e^{n\ln\left(1 + \frac{1}{n}\right)} = e - e^{n\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)} = e - e^{1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)} = \frac{e}{2n} + o\left(\frac{1}{n}\right)$$

On en déduit qu'au voisinage de $+\infty$, $e - \left(1 + \frac{1}{n}\right)^n \sim \frac{e}{2n}$

De plus, au voisinage de $+\infty$, $\ln\left(n^2+n\right)=2\ln n+\ln\left(1+\frac{1}{n}\right)=2\ln n+\frac{1}{n}+o\left(\frac{1}{n}\right)$

Donc $\ln (n^2 + n) \sim 2 \ln n$.

Et comme $e^{\frac{1}{n}} \sim_{+\infty} 1$, on en déduit que $u_n \sim_{+\infty} \frac{e}{8} \times \frac{1}{n (\ln n)^2}$

Or, d'après 1.(b), $\sum_{n \ge 2} \frac{1}{n (\ln n)^2}$ converge.

Donc, par critère d'équivalence pour les séries à termes positifs, $\sum u_n$ converge

Page 11

Mise à jour : 11/05/15

EXERCICE 6 analyse

Énoncé exercice 6

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs et l un réel positif strictement inférieur à 1.

1. Démontrer que si $\lim_{n\to+\infty} \frac{u_{n+1}}{u_n} = l$, alors la série $\sum u_n$ converge.

Indication: écrire, judicieusement, la définition de $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=l$, puis majorer, pour n assez grand, u_n par le terme général d'une suite géométrique.

Mise à jour : 11/05/15

2. Quelle est la nature de la série $\sum \frac{n!}{n^n}$?

Corrigé exercice 6

1. Par hypothèse : $\forall \varepsilon > 0, \exists N \in \mathbb{N} / \forall n \ge N, |\frac{u_{n+1}}{u} - l| \le \varepsilon.$ (1)

Prenons
$$\varepsilon = \frac{1-l}{2}$$

Prenons $\varepsilon = \frac{1-l}{2}$. Fixons un entier N vérifiant (1).

Alors
$$\forall n \in \mathbb{N}, \ n \geqslant N \Longrightarrow |\frac{u_{n+1}}{u_n} - l| \leqslant \frac{1-l}{2}.$$
Et donc, $\forall n \geqslant N, \ \frac{u_{n+1}}{u_n} \leqslant \frac{1+l}{2}.$
On pose $q = \frac{1+l}{2}.$ On a donc $q \in]0,1[.$

Et donc,
$$\forall n \ge N$$
, $\frac{u_{n+1}}{u_n} \le \frac{1+l}{2}$.

On pose
$$q = \frac{1+l}{2}$$
. On a donc $q \in]0,1$

On a alors
$$\forall n \geqslant N, u_{n+1} \leqslant qu_n$$

On en déduit, par récurrence, que
$$\forall n \geqslant N, \ u_n \leqslant q^{n-N}u_N.$$
 Or $\sum_{n\geqslant N} q^{n-N}u_N = u_Nq^{-N}\sum_{n\geqslant N} q^n$ et $\sum_{n\geqslant N} q^n$ converge car $q\in]0,1[.$

Donc, par critère de majoration des séries à termes positifs, $\sum u_n$ converge.

2. On pose: $\forall n \in \mathbb{N}^*, u_n = \frac{n!}{n!}$.

$$\forall\,n\in\mathbb{N}^*,\,u_n>0\text{ et }\forall\,n\in\mathbb{N}^*,\,\frac{u_{n+1}}{u_n}=\frac{n^n}{(n+1)^n}=\mathrm{e}^{-n\ln(1+\frac{1}{n})}.$$

Or
$$-n \ln(1+\frac{1}{n}) \underset{+\infty}{\sim} -1$$
 donc $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = e^{-1} < 1$.

Donc $\sum u_n$ converge.

EXERCICE 7 analyse

Énoncé exercice 7

1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de nombres réels positifs. On suppose que $(v_n)_{n\in\mathbb{N}}$ est non nulle à partir d'un certain rang Montrer que :

$$u_n \underset{+\infty}{\sim} v_n \implies \sum u_n$$
 et $\sum v_n$ sont de même nature.

2. Étudier la convergence de la série $\sum_{i=1}^{\infty} \frac{(i-1)\sin\left(\frac{1}{n}\right)}{(\sqrt{n+3}-1)\ln n}$

Remarque : i désigne le nombre complexe de carré égal à -1.

Corrigé exercice 7

1. Par hypothèse, $\exists N_0 \in \mathbb{N}/\forall n \in \mathbb{N}, n \geqslant N_0 \Longrightarrow v_n \neq 0$

Ainsi la suite
$$\left(\frac{u_n}{v_n}\right)$$
 est définie à partir du rang N_0 .

De plus, on suppose que $u_n \sim v_n$.

On en déduit que
$$\lim_{n\to+\infty} \frac{u_n}{v_n} = 1$$
.

Alors,
$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}/N \geqslant N_0$ et $\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \left| \frac{u_n}{v_n} - 1 \right| \leqslant \varepsilon$. (1)

Prenons
$$\varepsilon = \frac{1}{2}$$
. Fixons un entier N vérifiant (1).

Ainsi,
$$\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \left| \frac{u_n}{v_n} - 1 \right| \leqslant \frac{1}{2}$$
.

$$\text{C'est-\`a-dire}, \, \forall \, n \in \mathbb{N}, n \geqslant N \Longrightarrow -\frac{1}{2} \leqslant \frac{u_n}{v_n} - 1 \leqslant \frac{1}{2}.$$

On en déduit que
$$\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \frac{1}{2} \leqslant \frac{u_n}{v_n} \leqslant \frac{3}{2}.$$
 (*)

Premier cas : Si $\sum v_n$ converge

D'après (*),
$$\forall n \ge N, u_n \le \frac{3}{2}v_n$$
.

Donc, par critère de majoration des séries à termes positifs, $\sum u_n$ converge.

Deuxième cas : Si
$$\sum_{1} v_n$$
 diverge

D'après (*),
$$\forall n \ge N, \frac{1}{2}v_n \le u_n$$
.

Donc, par critère de minoration des séries à termes positifs, $\sum u_n$ diverge

Par symétrie de la relation d'équivalence, on obtient le résultat.

2. On pose
$$\forall n \ge 2$$
, $u_n = \frac{(i-1)\sin\left(\frac{1}{n}\right)}{\left(\sqrt{n+3}-1\right)\ln n}$

$$|u_n| = \frac{\sqrt{2}\sin(\frac{1}{n})}{\left(\sqrt{n+3}-1\right)\ln n}.$$

De plus
$$|u_n| \underset{+\infty}{\sim} \frac{\sqrt{2}}{n^{\frac{3}{2}} \ln n} = v_n$$

On a
$$n^{\frac{5}{4}}v_n = \frac{\sqrt{2}}{n^{\frac{1}{4}}\ln n}$$
, donc $\lim_{n\to+\infty} n^{\frac{5}{4}}v_n = 0$. On en déduit que $\sum v_n$ converge.

D'après 1.,
$$\sum_{n\geq 2} |u_n|$$
 converge.

Donc $\sum_{n\geq 2} u_n$ converge absolument.

De plus, la suite $(u_n)_{n\geqslant 2}$ est à valeurs dans \mathbb{C} , donc $\sum u_n$ converge.

EXERCICE 8 analyse

Énoncé exercice 8

Mise à jour : 11/05/15

Page 15

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante positive de limite nulle.
- (a) Démontrer que la série $\sum (-1)^k u_k$ est convergente.

Indication: on pourra considérer $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ avec $S_n = \sum_{k=0}^n (-1)^k u_k$.

- (b) Donner une majoration de la valeur absolue du reste de la série $\sum (-1)^k u_k$.
- 2. On pose : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, f_n(x) = \frac{(-1)^n e^{-nx}}{n}$.
- (a) Étudier la convergence simple sur \mathbb{R} de la série de fonctions $\sum_{n\geq 1} f_n$.
- (b) Étudier la convergence uniforme sur $[0, +\infty[$ de la série de fonctions $\sum f_n$.

Corrigé exercice 8

1. (a) $S_{2n+2} - S_{2n} = u_{2n+2} - u_{2n+1} \leq 0$, donc $(S_{2n})_{n \in \mathbb{N}}$ est décroissante.

De même $S_{2n+3} - S_{2n+1} \ge 0$, donc $(S_{2n+1})_{n \in \mathbb{N}}$ est croissante.

De plus
$$S_{2n} - S_{2n+1} = u_{2n+1}$$
 et $\lim u_{2n+1} = 0$, donc $\lim (S_{2n} - S_{2n+1}) = 0$

De plus $S_{2n}-S_{2n+1}=u_{2n+1}$ et $\lim_{n\to+\infty}u_{2n+1}=0$, donc $\lim_{n\to+\infty}(S_{2n}-S_{2n+1})=0$. On en déduit que les suites $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes. Donc elles convergent et ce vers

Comme $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ recouvrent l'ensemble des termes de la suite $(S_n)_{n\in\mathbb{N}}$, on en déduit que la suite $(S_n)_{n\in\mathbb{N}}$ converge aussi vers cette limite.

Ce qui signifie que la série $\sum (-1)^k u_k$ converge

- (b) Le reste $R_n = \sum_{k=n+1}^{+\infty} (-1)^k u_k$ vérifie $\forall n \in \mathbb{N}, |R_n| \leqslant u_{n+1}$.
- 2. On pose $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*, a_n(x) = \frac{(-1)^n e^{-nx}}{n}$.

On a alors $\forall n \in \mathbb{N}^*$, $a_n(x) = (-1)^n u_n(x)$ avec $u_n(x) = \frac{e^{-nx}}{a}$.

Si x<0, alors $\lim_{n\to +\infty} |a_n(x)|=+\infty$, donc $\sum_{n\geqslant 1} a_n(x)$ diverge grossièrement.

Si $x \ge 0$, alors $(u_n(x))_{n \in \mathbb{N}}$ est positive, décroissante et $\lim_{n \to +\infty} u_n(x) = 0$.

Donc d'après 1.(a), $\sum_{n \geq 1} a_n(x)$ converge.

Donc $\sum a_n$ converge simplement sur $[0, +\infty[$.

(b) Comme $\sum_{i=1}^n a_i$ converge simplement sur $[0, +\infty[$, on peut poser $\forall x \in [0, +\infty[$, $R_n(x) = \sum_{i=1}^{+\infty} a_k(x)$.

Alors, comme, $\forall x \in [0, +\infty[, (u_n(x))_{n \in \mathbb{N}} \text{ est positive, décroissante et } \lim_{n \to +\infty} u_n(x) = 0$, on en déduit, d'après 1.(b), que :

$$\forall x \in [0, +\infty[, |R_n(x)| \le \frac{e^{-(n+1)x}}{n+1}.$$

Et donc $\forall x \in [0, +\infty[, |R_n(x)| \leq \frac{1}{n+1}]$. (majoration indépendante de x)

Et comme $\lim_{n \to +\infty} \frac{1}{n+1} = 0$, alors (R_n) converge uniformément vers 0 sur $[0, +\infty[$.

C'est à dire $\sum a_n$ converge uniformément sur $[0, +\infty[$.

EXERCICE 9 analyse

Énoncé exercice 9

- 1. Soit X un ensemble, (g_n) une suite de fonctions de X dans \mathbb{C} et g une fonction de X dans \mathbb{C} . Donner la définition de la convergence uniforme sur X de la suite de fonctions (g_n) vers la fonction g.
- 2. On pose $f_n(x) = \frac{n+2}{n+1} e^{-nx^2}$.
- (a) Étudier la convergence simple de la suite de fonctions (f_n) .
- (b) La suite de fonctions (f_n) converge-t-elle uniformément sur $[0, +\infty[$?
- (c) Soit a > 0. La suite de fonctions (f_n) converge-t-elle uniformément sur $[a, +\infty]$?
- (d) La suite de fonctions (f_n) converge-t-elle uniformément sur $]0, +\infty[$?

Corrigé exercice 9

1. Soit $q_n: X \longrightarrow \mathbb{C}$ et $q: X \longrightarrow \mathbb{C}$.

Dire que (g_n) converge uniformément vers g sur X signifie que :

 $\forall \varepsilon > 0, \exists N \in \mathbb{N} / \forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \forall x \in X, |g_n(x) - g(x)| \leqslant \varepsilon.$

Ou encore, (g_n) converge uniformément vers g sur $X \iff \lim_{n \to +\infty} \left(\sup_{x \in X} |g_n(x) - g(x)| \right) = 0$.

2. (a) On pose $\forall x \in \mathbb{R}, f_n(x) = \frac{n+2}{n+1} e^{-nx^2}$.

Si x = 0, alors $f_n(0) = \frac{n+2}{n+1}$, donc $\lim_{n \to +\infty} f_n(0) = 1$.

Si $x \neq 0$, alors $\lim_{n \to +\infty} f_n(0) = 0$ car $f_n(x) \sim e^{-nx^2}$.

On en déduit que (f_n) converge simplement sur $\mathbb R$ vers la fonction f définie par :

$$f(x) = \begin{cases} 0 & \text{si} \quad x \neq \\ 1 & \text{si} \quad x = \end{cases}$$

- (b) $\forall n \in \mathbb{N}, f_n$ est continue sur $[0; +\infty[$ et f non continue en 0 donc (f_n) ne converge pas uniformément vers f sur $[0; +\infty[$.
- (c) Soit a > 0.

On a : $\forall x \in [a, +\infty[, |f_n(x) - f(x)| = |f_n(x)| \le \frac{n+2}{n+1} e^{-na^2}$ (majoration indépendante de x).

Par ailleurs $\lim_{n\to+\infty} \frac{n+2}{n+1} e^{-na^2} = 0$ (car $\frac{n+2}{n+1} e^{-na^2} \approx e^{-na^2}$). Donc (f_n) converge uniformément vers f sur $[a,+\infty[$.

(d) On remarque que $\forall n \in \mathbb{N}, f_n$ est bornée sur $]0, +\infty[$ car $\forall x \in]0, +\infty[$, $|f_n(x)| \le \frac{n+2}{n+1} \le 2$. D'autre part, f est bornée sur $[0, +\infty[$, donc, $\forall n \in \mathbb{N}, \sup_{x \in]0, +\infty[} |f_n(x) - f(x)|$ existe.

On a
$$|f_n(\frac{1}{\sqrt{n}}) - f(\frac{1}{\sqrt{n}})| = \frac{(n+2)e^{-1}}{n+1} \operatorname{donc} \lim_{n \to +\infty} |f_n(\frac{1}{\sqrt{n}}) - f(\frac{1}{\sqrt{n}})| = e^{-1} \neq 0.$$

Or $\sup_{x\in]0,+\infty[} |f_n(x)-f(x)|\geqslant |f_n(\frac{1}{\sqrt{n}})-f(\frac{1}{\sqrt{n}})|,$ donc $\sup_{x\in]0,+\infty[} |f_n(x)-f(x)| \not\to 0$. Donc (f_n) ne converge pas uniformément vers f sur $]0,+\infty[$.

CC BY-NC-SA 3.0 FR Page 17 CC BY-NC-SA 3.0 FR Page 18

EXERCICE 10 analyse

Énoncé exercice 10

On pose
$$f_n(x) = (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x}$$
.

- 1. Démontrer que la suite de fonctions (f_n) converge uniformément sur [0,1].
- 2. Calcular $\lim_{n \to +\infty} \int_{0}^{1} (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x} dx$.

Corrigé exercice 10

1. Pour $x \in [0,1]$, $\lim_{n \to +\infty} f_n(x) = (x^2 + 1)e^x$.

La suite de fonctions (f_n) converge simplement vers $f: x \mapsto (x^2+1)e^x$ sur [0,1].

On a
$$\forall x \in [0,1], f_n(x) - f(x) = (x^2 + 1) \frac{x(\mathrm{e}^{-x} - \mathrm{e}^x)}{n+x}$$
, et donc : $\forall x \in [0,1], |f_n(x) - f(x)| \leqslant \frac{2\mathrm{e}}{n}$. Ce majorant indépendant de x tend vers 0 quand $n \to +\infty$, donc la suite de fonctions (f_n) converge

uniformément vers f sur [0,1].

2. Par convergence uniforme sur le segment [0,1] de cette suite de fonctions continues sur [0,1], on peut intervertir limite et intégrale

On a donc
$$\lim_{n \to +\infty} \int_0^1 (x^2 + 1) \frac{ne^x + xe^{-x}}{n+x} dx = \int_0^1 (x^2 + 1)e^x dx.$$

Puis, en effectuant deux intégrations par parties, on trouve $\int_{-1}^{1} (x^2 + 1)e^x dx = 2e - 3$.

EXERCICE 11 analyse

Énoncé exercice 11

1. Soit X une partie de \mathbb{R} , (f_n) une suite de fonctions de X dans \mathbb{R} convergeant simplement vers une fonction

On suppose qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de X telle que la suite $(f_n(x_n)-f(x_n))_{n\in\mathbb{N}}$ ne tende

Démontrer que la suite de fonctions (f_n) ne converge pas uniformément vers f sur X.

- 2. Pour tout $x \in \mathbb{R}$, on pose $f_n(x) = \frac{\sin(nx)}{1 + n^2 x^2}$
- (a) Étudier la convergence simple de la suite (f_n) .
- (b) Étudier la convergence uniforme de la suite (f_n) sur $[a, +\infty[$ (avec a > 0), puis sur $]0, +\infty[$.

Corrigé exercice 11

1. Par contraposée :

si (f_n) converge uniformément vers f alors :

il existe un entier N tel que $\forall n \geqslant N$, $||f_n - f||_{\infty} = \sup_{x \in X} |f_n(x) - f(x)|$ existe et $\lim_{n \to +\infty} ||f_n - f||_{\infty} = 0$.

Or,
$$\forall n \in \mathbb{N}, x_n \in X \text{ donc } \forall n \in \mathbb{N}, n \geqslant N \Longrightarrow |f_n(x_n) - f(x_n)| \leqslant ||f_n - f||_{\infty}.$$

Or
$$\lim_{n\to+\infty} ||f_n - f||_{\infty} = 0.$$

Donc
$$\lim_{n \to +\infty} |f_n(x_n) - f(x_n)| = 0.$$

C'est-à-dire la suite $(f_n(x_n) - f(x_n))_{n \in \mathbb{N}}$ converge vers 0.

2. (a) Soit $x \in \mathbb{R}$.

Si
$$x = 0$$
, alors $f_n(0) = 0$.

Si
$$x \neq 0$$
, alors $\lim_{n \to +\infty} f_n(x) = 0$ car $|f_n(x)| \leqslant \frac{1}{n^2 x^2}$

Donc la suite (f_n) converge simplement vers la fonction nulle sur \mathbb{R} .

(b) Soit a > 0.

$$\forall x \in [a, +\infty[, |f_n(x) - f(x)| = |f_n(x)| \le \frac{1}{1 + n^2 a^2}$$

Cette majoration est indépendante de x et $\lim_{x \to 1} \frac{1}{1 + x^2 \cdot x^2} = 0$.

On en déduit que la suite de fonctions (f_n) converge uniformément vers la fonction nulle sur $[a, +\infty[$.

On pose,
$$\forall n \in \mathbb{N}^*, x_n = \frac{\pi}{2n}$$
.

On a
$$\forall n \in \mathbb{N}^*$$
, $x_n \in]0, +\infty[$ et $|f_n(x_n) - f(x_n)| = \frac{1}{1 + \frac{\pi^2}{4}}$ qui ne tend pas vers 0 quand $n \to +\infty$.

On en déduit, d'après 1., que la suite de fonctions (f_n) ne converge pas uniformément sur $]0, +\infty[$.

Mise à jour : 11/05/15

EXERCICE 12 analyse

Énoncé exercice 12

1. Soit (f_n) une suite de fonctions de [a,b] dans \mathbb{R} .

On suppose que la suite de fonctions (f_n) converge uniformément sur [a,b] vers une fonction f, et que, pour tout $n \in \mathbb{N}$, f_n est continue en x_0 , avec $x_0 \in [a, b]$.

Mise à jour : 11/05/15

Démontrer que f est continue en x_0 .

2. On pose : $\forall n \in \mathbb{N}^*, \forall x \in [0, 1], g_n(x) = x^n$.

La suite de fonctions $(g_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément sur [0;1]?

Corrigé exercice 12

1. Soit $x_0 \in [a, b]$.

Prouvons que f est continue en x_0 .

Soit $\varepsilon > 0$.

Par convergence uniforme, il existe un entier N tel que $\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow (\forall x \in [a,b], |f(x)-f_n(x)| \leqslant \varepsilon)$. En particulier pour n = N, on a $\forall x \in [a, b], |f(x) - f_N(x)| \leq \varepsilon$. (*)

Or la fonction f_N est continue en x_0 donc $\exists \alpha > 0$ tel que :

$$\forall x \in [a, b], |x - x_0| \leqslant \alpha \Rightarrow |f_N(x) - f_N(x_0)| \leqslant \varepsilon. \quad (**)$$

D'après l'inégalité triangulaire, $\forall x \in [a, b]$.

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)|.$$

Alors d'après (*) et (**),

$$\forall x \in [a, b], |x - x_0| \le \alpha \Rightarrow |f(x) - f(x_0)| \le 3\varepsilon.$$

On en déduit que f est continue en x_0 .

2. La suite $(g_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers la fonction $g:x\mapsto \begin{cases} 0 & \text{si } x\in[0,1[\\ 1 & \text{si } x=1 \end{cases}$

 $\forall n \in \mathbb{N}^*, g_n$ est continue en 1 alors que g est discontinue en 1.

D'après la question précédente, on en déduit que $(q_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément vers q sur [0,1].

EXERCICE 13 analyse

Énoncé exercice 13

- 1. Soit (g_n) une suite de fonctions de X dans \mathbb{C} , X désignant un ensemble non vide quelconque. On suppose que, pour tout $n \in \mathbb{N}$, g_n est bornée et que la suite (g_n) converge uniformément sur X vers g. Démontrer que la fonction g est bornée.
- 2. Pour tout entier naturel n non nul, on considère la fonction f_n définie sur \mathbb{R} par :

$$f_n(x) = \begin{cases} n^2 x & \text{si} \quad |x| \leqslant \frac{1}{n} \\ \frac{1}{x} & \text{si} \quad |x| > \frac{1}{n} \end{cases}$$

Prouver que la suite de fonctions (f_n) converge simplement sur \mathbb{R} .

La convergence est-elle uniforme sur \mathbb{R} ?

Corrigé exercice 13

1. $\forall n \in \mathbb{N}, q_n$ est bornée sur X, c'est-à-dire : $\forall n \in \mathbb{N}, \exists M_n \in \mathbb{R}^+ / \forall x \in X, |q_n(x)| \leq M_n$. (*) Notons que ce majorant M_n dépend de n.

 (g_n) converge uniformément vers g sur X. Ce qui signifie que :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} / \forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \forall x \in X, |g_n(x) - g(x)| \leqslant \varepsilon.$$
 (1)

Prenons $\varepsilon = 1$ et fixons un entier N vérifiant (1) pour ce choix de ε .

Alors, $\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \forall x \in X, |g_n(x) - g(x)| \leqslant 1.$

En particulier, $\forall x \in X, |g_N(x) - g(x)| \leq 1.$ (**)

Or, d'après l'inégalité triangulaire, $\forall x \in X, |g(x)| \leq |g(x) - g_N(x)| + |g_N(x)|$.

Donc, d'après (*) et (**), $\forall x \in X, |g(x)| \leq 1 + M_N$.

Ce qui signifie que g est bornée sur X.

2. $\forall n \in \mathbb{N}^*$, $f_n(0) = 0$, donc $\lim_{n \to \infty} f_n(0) = 0$.

Soit $x \in \mathbb{R}^*$.

 $\lim_{n\to +\infty}\frac{1}{n}=0 \text{ donc, } \exists\, N\in \mathbb{N}^* \text{ tel que, } \forall\, n\in \mathbb{N},\, n\geqslant N\Longrightarrow \frac{1}{n}<|x|.$ Fixons un tel entier N.

Alors $\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow f_n(x) = \frac{1}{x}$.

Donc $\lim_{n \to +\infty} f_n(x) = \frac{1}{x}$.

On en déduit que (f_n) converge simplement sur $\mathbb R$ vers la fonction f définie par :

$$f(x) = \begin{cases} \frac{1}{x} & \text{si} \quad x \neq 0 \\ 0 & \text{si} \quad x = 0 \end{cases}.$$

De plus, $\forall n \in \mathbb{N}^*$, f_n est bornée car $\forall x \in \mathbb{R}$, $|f_n(x)| \leq n$.

Or f n'est pas bornée sur \mathbb{R} donc, d'après la question précédente, (f_n) ne converge pas uniformément sur \mathbb{R} .

Page 21

EXERCICE 14 analyse

Énoncé exercice 14

1. Soit a et b deux réels donnés avec a < b. Soit (f_n) une suite de fonctions continues sur [a,b], à valeurs réelles.

Démontrer que si la suite (f_n) converge uniformément sur [a,b] vers f, alors la suite $\left(\int_a^b f_n(x) dx\right)_{n \in \mathbb{N}}$ converge vers $\int_a^b f(x) dx$.

Mise à jour : 11/05/15

2. Justifier comment ce résultat peut être utilisé dans le cas des séries de fonctions.

3. Démontrer que
$$\int_0^{\frac{1}{2}} \left(\sum_{n=0}^{+\infty} x^n \right) dx = \sum_{n=1}^{+\infty} \frac{1}{n2^n}.$$

Corrigé exercice 14

1. Comme la suite (f_n) converge uniformément sur [a,b] vers f, et que, $\forall n \in \mathbb{N}$, f_n est continue sur [a,b], alors f est continue sur [a,b].

Ainsi, $\forall n \in \mathbb{N}, f_n - f$ est continue sur le segment [a, b]. On pose alors, $\forall n \in \mathbb{N}, ||f_n - f||_{\infty} = \sup_{x \in [a,b]} |f_n(x) - f(x)|$.

On a
$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} (f_{n}(x) - f(x)) dx \right| \le \int_{a}^{b} |f_{n}(x) - f(x)| dx \le (b - a) \|f_{n} - f\|_{\infty}.$$
 (*)

Or (f_n) converge uniformément vers f sur [a,b], donc $\lim_{n\to+\infty} ||f_n-f||_{\infty} = 0$.

Donc d'après (*), $\lim_{n \to +\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

2. On suppose que $\forall n \in \mathbb{N}$, f_n est continue sur [a,b] et $\sum f_n$ converge uniformément sur [a,b].

On pose
$$S_n = \sum_{k=0}^n f_k$$
.

 $\sum f_n$ converge uniformément sur [a,b], donc converge simplement sur [a,b]

On pose alors, également, $\forall x \in [a, b], S(x) = \sum_{k=0}^{+\infty} f_k(x)$.

 $\sum f_n \text{ converge uniformément sur } [a,b] \text{ signific que } (S_n) \text{ converge uniformément sur } [a,b] \text{ vers } S.$ De plus, $\forall \, n \in \mathbb{N}, \, S_n$ est continue sur [a,b], car S_n est une somme finie de fonctions continues. On en déduit que S est continue sur [a,b].

Et d'après 1., $\lim_{n \to +\infty} \int_a^b S_n(x) dx = \int_a^b S(x) dx$. Or $\int_a^b S_n(x) dx = \int_a^b \sum_{k=0}^n f_k(x) dx = \sum_{k=0}^n \int_a^b f_k(x) dx$ car il s'git d'une somme finie. Donc $\lim_{n \to +\infty} \sum_{k=0}^n \int_a^b f_k(x) dx = \int_a^b S(x) dx$.

Ou encore $\lim_{n \to +\infty} \sum_{k=0}^{n} \int_{a}^{b} f_k(x) dx = \int_{a}^{b} \sum_{k=0}^{+\infty} f_k(x) dx$.

Ce qui signifie que $\sum \int_a^b f_k(x) dx$ converge et $\sum_{k=0}^{+\infty} \int_a^b f_k(x) dx = \int_a^b \sum_{k=0}^{+\infty} f_k(x) dx$.

 $\begin{aligned} \mathbf{Bilan}: \text{La convergence uniforme de la série de fonctions} & \sum_{n=0}^{b} f_n \text{ où les } f_n \text{ sont continues sur } [a,b] \text{ permet d'} \\ \text{intégrer terme à terme, c'est-à-dire}: & \int_a^b \sum_{n=0}^{+\infty} f_n(x) \, \mathrm{d}x = \sum_{n=0}^{+\infty} \int_a^b f_n(x) \, \mathrm{d}x. \end{aligned}$

3. La série entière $\sum x^n$ est de rayon de convergence R=1 donc cette série de fonctions converge normalement et donc uniformément sur le compact $\left[0,\frac{1}{2}\right]\subset \left]-1,1\right[$.

De plus,
$$\forall n \in \mathbb{N}, x \longmapsto x^n$$
 est continue sur $\left[0, \frac{1}{2}\right]$.

On en déduit alors, en utilisant 2., que : $\int_0^{\frac{1}{2}} \left(\sum_{n=0}^{+\infty} x^n\right) dx = \sum_{n=0}^{+\infty} \int_0^{\frac{1}{2}} x^n dx = \sum_{n=0}^{+\infty} \frac{1}{n+1} \frac{1}{2^{n+1}} = \sum_{n=0}^{+\infty} \frac{1}{n} \frac{1}{2^n}$.

EXERCICE 15 analyse

Énoncé exercice 15

Soit X une partie de \mathbb{R} ou \mathbb{C}

- 1. Soit $\sum f_n$ une série de fonctions définies sur X à valeurs dans \mathbb{R} ou \mathbb{C} .
 - Rappeler la définition de la convergence normale de $\sum f_n$ sur X, puis celle de la convergence uniforme de $\sum f_n \operatorname{sur} X$.

Mise à jour : 11/05/15

- 2. Démontrer que toute série de fonctions, à valeurs dans $\mathbb R$ ou $\mathbb C$, normalement convergente sur X est
- 3. La série de fonctions $\sum_{n=1}^{\infty} \frac{n^2}{n!} z^n$ est-elle uniformément convergente sur le disque fermé de centre 0 et de

Corrigé exercice 15

1. On suppose que $\forall n \in \mathbb{N}$, f_n est bornée sur X.

On pose alors
$$\forall n \in \mathbb{N}, ||f_n||_{\infty} = \sup_{t \in X} |f_n(t)|.$$

$$\sum f_n$$
 converge normalement sur $X \iff \sum \|f_n\|_{\infty}$ converge.

On pose
$$\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n f_k$$
.

$$\sum f_n$$
 converge uniformément sur $X \iff$ la suite de fonctions (S_n) converge uniformément sur X .

2. On suppose que $\sum f_n$ converge normalement sur X.

Les fonctions
$$f_n$$
 sont donc bornées sur X et la série numérique $\sum \|f_n\|_{\infty}$ converge.

Or,
$$\forall x \in X$$
, $|f_n(x)| \leq ||f_n||_{\infty}$.

Donc, par comparaison des séries à termes positifs, la série $\sum f_n(x)$ est absolument convergente et donc

convergente, puisque les fonctions f_n sont à valeurs dans $\mathbb R$ ou $\mathbb C$. Ainsi la série de fonctions $\sum f_n$ converge simplement sur X.

On peut donc poser
$$\forall x \in X, \forall n \in \mathbb{N}, R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x)$$
.

$$\forall \, x \in X, \, \forall \, n \in \mathbb{N}, \, \forall \, N \in \mathbb{N}, \, N \geqslant n+1 \Longrightarrow \left| \sum_{k=n+1}^N f_k(x) \right| \leqslant \sum_{k=n+1}^N |f_k(x)| \leqslant \sum_{k=n+1}^N \|f_k\|_\infty.$$

Alors, en faisant tendre
$$N$$
 vers $+\infty$, on obtain:
$$\forall x \in X, |R_n(x)| = \left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \leqslant \sum_{k=n+1}^{+\infty} |f_k(x)| \leqslant \sum_{k=n+1}^{+\infty} ||f_k||_{\infty}. \quad \text{(majoration indépendante de } x)$$

Or
$$\sum f_n$$
 converge normalement sur X donc $\lim_{n\to+\infty}\sum_{k=n+1}^{+\infty}\|f_k\|_{\infty}=0$.

On en déduit alors que la suite de fonctions (R_n) converge uniformément vers 0 sur X.

Comme $R_n = S - S_n$, la suite (S_n) converge uniformément vers S sur X.

C'est-à-dire $\sum f_n$ converge uniformément sur X.

$$\begin{aligned} &3. \text{ On pose, } \forall \, n \in \mathbb{N}, \, a_n = \frac{n^2}{n!}. \\ &\forall \, n \in \mathbb{N}^*, \, \frac{a_{n+1}}{a_n} = \frac{n+1}{n^2}. \\ &\text{ Donc } \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 0. \end{aligned}$$

$$\forall n \in \mathbb{N}^*, \ \frac{a_{n+1}}{a_n} = \frac{n+1}{n^2}.$$

Donc
$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 0$$

On en déduit que série entière $\sum_{n=1}^{n} z^n$ a un rayon de convergence égal à $+\infty$.

Cette série entière converge donc normalement sur tout compact de C.

En particulier, cette série entière converge normalement et donc uniformément, d'après 2., sur tout disque de centre O et de rayon R.

CC BY-NC-SA 3.0 FR Page 25 CC BY-NC-SA 3.0 FR Page 26

EXERCICE 16 analyse

Énoncé exercice 16

On considère la série de fonctions de terme général u_n définie par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0, 1], \ u_n(x) = \ln\left(1 + \frac{x}{n}\right) - \frac{x}{n}$$
.

Mise à jour : 11/05/15

On pose, lorsque la série converge, $S(x) = \sum_{n=0}^{+\infty} \left[\ln \left(1 + \frac{x}{n} \right) - \frac{x}{n} \right].$

- 1. Démontrer que S est dérivable sur [0, 1].
- 2. Calculer S'(1).

Corrigé exercice 16

1. Soit $x \in [0, 1]$.

Si
$$x = 0$$
, $u_n(0) = 0$ et donc $\sum u_n(0)$ converge

Si
$$x \neq 0$$
, comme au voisinage de $+\infty$, $u_n(x) = -\frac{x^2}{2n^2} + o\left(\frac{1}{n^2}\right)$, alors $|u_n(x)| \underset{+\infty}{\sim} \frac{x^2}{2n^2}$

Or $\sum \frac{1}{n^2}$ converge donc, par critère de comparaison des séries à termes positifs, $\sum u_n(x)$ converge

absolument, donc converge.

On en déduit que la série des fonctions u_n converge simplement sur [0,1].

La fonction S est donc définie sur [0,1].

$$\forall n \in \mathbb{N}^*, u_n \text{ est de classe } \mathcal{C}^1 \text{ sur } [0,1] \text{ et } \forall x \in [0,1], u_n'(x) = \frac{1}{x+n} - \frac{1}{n} = \frac{-x}{n(x+n)}$$

Donc
$$\forall n \in \mathbb{N}^*, \forall x \in [0,1], |u'_n(x)| \leqslant \frac{1}{n^2}$$
.

On en déduit que
$$\|u_n'\|_{\infty} = \sup_{x \in [0,1]} |u_n'(x)| \leqslant \frac{1}{n^2}$$
.

Or
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converge.

Donc
$$\sum_{n\geq 1} u'_n$$
 converge normalement, donc uniformément sur $[0,1]$.

On peut alors affirmer que la fonction S est de classe \mathcal{C}^1 . Elle est donc dérivable sur [0,1]

Et on a :
$$\forall x \in [0; 1], S'(x) = \sum_{n=1}^{+\infty} u'_n(x).$$

2. En vertu de ce qui précède, $S'(1) = \sum_{n=0}^{+\infty} u'_n(1) = \sum_{n=0}^{+\infty} \left(\frac{1}{n+1} - \frac{1}{n}\right)$.

Or
$$\sum_{n=1}^{N} \left(\frac{1}{n+1} - \frac{1}{n} \right) = \frac{1}{N+1} - 1 \xrightarrow[N \to +\infty]{} -1.$$

Donc
$$S'(1) = -1$$
.

EXERCICE 17 analyse

Énoncé exercice 17

Soit $A \subset \mathbb{C}$ et (f_n) une suite de fonctions de A dans \mathbb{C} .

1. Démontrer l'implication :

(la série de fonctions
$$\sum f_n$$
 converge uniformément sur A)

(la suite de fonctions (f_n) converge uniformément vers 0 sur A)

2. On pose: $\forall n \in \mathbb{N}, \forall x \in [0; +\infty[, f_n(x) = nx^2 e^{-x\sqrt{n}}]$. Prouver que $\sum f_n$ converge simplement sur $[0; +\infty[$ $\sum f_n$ converge-t-elle uniformément sur $[0; +\infty[$? Justifier

Corrigé exercice 17

1. On suppose que $\sum f_n$ converge uniformément sur X.

On en déduit que $\sum f_n$ converge simplement sur X.

On pose alors,
$$\forall\,x\in X,\,S(x)=\sum_{k=0}^{+\infty}f_k(x)$$
 et $\forall\,n\in\mathbb{N},\,S_n(x)=\sum_{k=0}^nf_k(x).$

 $\sum f_n$ converge uniformément sur X, c'est-à-dire (S_n) converge uniformément vers S sur X, c'est-à-dire $\lim_{n\to+\infty} ||S_n-S||_{\infty} = 0, \text{ avec } ||S_n-S||_{\infty} = \sup_{x\in Y} |S_n(x)-S(x)|$

On a
$$\forall n \in \mathbb{N}^*, \forall x \in X, |f_n(x)| = |S_n(x) - S_{n-1}(x)| \leq |S_n(x) - S(x)| + |S(x) - S_{n-1}(x)|.$$

 $\begin{array}{l} \text{Donc } \forall \, n \in \mathbb{N}^*, \, \forall \, x \in X, |f_n(x)| \leqslant ||S_n - S||_{\infty} + ||S_{n-1} - S||_{\infty} \, \, \, (\text{majoration indépendante de } x). \\ \text{Or } \lim_{n \to +\infty} ||S_n - S||_{\infty} = 0, \, \text{donc } \lim_{n \to +\infty} (||S_n - S||_{\infty} + ||S_{n-1} - S||_{\infty}) = 0. \end{array}$

 $n \to +\infty$ $n \to +\infty$ $n \to +\infty$ $N \to +\infty$ Donc (f_n) converge uniformément vers 0 sur X

2. On pose : $\forall n \in \mathbb{N}, \forall x \in [0; +\infty[, f_n(x) = nx^2 e^{-x\sqrt{n}}]$.

Soit $x \in [0; +\infty[$.

 $\forall n \in \mathbb{N}, f_n(0) = 0 \text{ donc } \sum f_n(0) \text{ converge.}$

$$\lim_{n\to +\infty} n^2 f_n(x) = 0,$$
donc au voisinage de $+\infty,\, f_n(x) = o\left(\frac{1}{n^2}\right)$

Or $\sum \frac{1}{n^2}$ converge donc, par critère de domination, $\sum f_n(x)$ converge

On en déduit que $\sum f_n$ converge simplement sur $[0; +\infty[$.

 $\forall n \in \mathbb{N}^*, f_n$ est continue sur $[0; +\infty[$ et $\lim_{x \to +\infty} f_n(x) = 0$, donc f_n est bornée sur $[0; +\infty[$.

Comme f_0 est bornée ($f_0 = 0$), on en déduit que $\forall n \in \mathbb{N}$, f_n est bornée.

De plus, la suite de fonctions (f_n) converge simplement vers la fonction nulle.

En effet, si x = 0 alors $f_n(0) = 0$ et si $x \neq 0$, $\lim_{n \to +\infty} f_n(x) = 0$.

On a
$$\forall n \in \mathbb{N}^*$$
, $f_n\left(\frac{1}{\sqrt{n}}\right) = e^{-1}$.
Or, $\forall n \in \mathbb{N}^*$, $f_n\left(\frac{1}{\sqrt{n}}\right) = |f_n\left(\frac{1}{\sqrt{n}}\right)| \leq \sup_{n \in \mathbb{N}} |f_n(t)|$; done

Or,
$$\forall n \in \mathbb{N}^*$$
, $f_n\left(\frac{1}{\sqrt{n}}\right) = |f_n\left(\frac{1}{\sqrt{n}}\right)| \leq \sup_{t \in [0; +\infty[} |f_n(t)|; \operatorname{donc} \sup_{t \in [0; +\infty[} |f_n(t)| \geqslant e^{-1}.$
Ainsi, $\sup_{t \in [0; +\infty[} |f_n(t)| \Rightarrow 0.$

Page 27

On en déduit que (f_n) ne converge pas uniformément vers la fonction nulle sur $[0; +\infty[$. Donc, d'après 1., $\sum f_n$ ne converge pas uniformément sur $[0; +\infty[$.

EXERCICE 18 analyse

Énoncé exercice 18

Mise à jour : 11/05/15

On pose: $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, u_n(x) = \frac{(-1)^n x^n}{n}$

On considère la série de fonctions $\sum u_n$.

1. Étudier la convergence simple de cette série

On note D l'ensemble des x où cette série converge et S(x) la somme de cette série pour $x \in D$.

- 2. (a) Étudier la convergence normale, puis la convergence uniforme de cette série sur D.
- (b) La fonction S est-elle continue sur D?

Corrigé exercice 18

1. La série de fonctions étudiée est une série entière de rayon de convergence R=1.

En x = 1, il y a convergence par le critère spécial des séries alternées.

En x = -1, la série diverge (série harmonique).

On a donc D = [-1, 1].

2. (a)
$$\forall x \in D, u_n(x) = \frac{(-1)^n x^n}{n}$$
.

2. (a)
$$\forall x \in D, u_n(x) = \frac{(-1)^n x^n}{n}.$$

 $\|u_n\|_{\infty} = \sup_{x \in]-1,1]} |u_n(x)| = \frac{1}{n} \text{ et } \sum_{n \geqslant 1} \frac{1}{n} \text{ diverge.}$

Donc $\sum_{n > 1} \frac{(-1)^n}{n} x^n$ ne converge pas normalement sur D.

 $\sum_{n\geqslant 1}\frac{(-1)^n}{n}\;x^n$ ne converge pas uniformément sur D non plus car, sinon, on pourrait employer le

théorème de la double limite en -1 et cela entraı̂nerait la convergence absurde de la série $\sum \frac{1}{n}$.

(b) En tant que somme d'une série entière de rayon de convergence 1, S est continue sur]-1,1[. (*)

Pour étudier la continuité en 1, on peut se placer sur [0,1].

 $\forall \, x \in [0,1]$, la série numérique $\sum_{n\geqslant 1} u_n(x)$ satisfait le critère spécial des séries alternées ce qui permet de

majorer son reste. On a, $\forall x \in [0,1], \left| \sum_{k=n+1}^{+\infty} u_k(x) \right| \leq |u_{n+1}(x)| = \frac{x^{n+1}}{n+1} \leq \frac{1}{n+1}$. (majoration indépendante de x)

Et,
$$\lim_{n \to +\infty} \frac{1}{n+1} = 0$$
.

Donc, $\sum u_n$ converge uniformément sur [0,1].

Les fonctions u_n étant continues sur [0,1], la somme S est alors continue sur [0,1].

Donc, en particulier, S est continue en 1. (**)

Donc, d'après (*) et (**), S est continue sur D.

EXERCICE 19 analyse

Énoncé exercice 19

- 1. Démontrer que la série $\sum \frac{z^n}{n!}$ est absolument convergente pour tout $z \in \mathbb{C}$.
- 2. On pose : $\forall z \in \mathbb{C}, f(z) = \sum_{n=1}^{+\infty} \frac{z^n}{n!}$.

Démontrer que : $\forall (z, z') \in \mathbb{C}^2$, $f(z) \times f(z') = f(z + z')$, sans utiliser le fait que $f(z) = e^z$.

3. En déduire que : $\forall z \in \mathbb{C}, \ f(z) \neq 0 \text{ et } \frac{1}{f(z)} = f(-z).$

Corrigé exercice 19

1. Pour z=0, la propriété est immédiate

Pour $z \neq 0$, on pose $u_n(z) = \frac{z^n}{n!}$. On a $\left| \frac{u_{n+1}(z)}{u_n(z)} \right| = \frac{|z|}{n+1} \to 0 < 1$.

Le critère de d'Alembert assure alors l'absolue conve

Soit (z, z') ∈ C².

Par produit de Cauchy de séries absolument convergentes, $\left(\sum_{n=0}^{+\infty} \frac{z^n}{n!}\right) \times \left(\sum_{n=0}^{+\infty} \frac{(z')^n}{n!}\right) = \sum_{n=0}^{+\infty} \sum_{k=0}^{n} \frac{z^k}{k!} \frac{(z')^{n-k}}{(n-k)!}$

$$\operatorname{Or} \sum_{k=0}^{n} \frac{z^{k}}{k!} \frac{z'^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} z^{k} z'^{n-k} = \frac{(z+z')^{n}}{n!}.$$

$$\operatorname{Donc} \left(+\sum_{k=0}^{+\infty} \frac{z^{n}}{k!} \right) \times \left(+\sum_{k=0}^{+\infty} \frac{z'^{n}}{k!} \right) = \sum_{k=0}^{+\infty} \frac{(z+z')^{n}}{k!}.$$

Donc $\left(\sum_{n=0}^{+\infty} \frac{z^n}{n!}\right) \times \left(\sum_{n=0}^{+\infty} \frac{z'^n}{n!}\right) = \sum_{n=0}^{+\infty} \frac{(z+z')^n}{n!}.$ C'est-à-dire, on a bien $f(z) \times f(z') = f(z+z').$

Puisque $f(z) \times f(-z) = f(0) = 1$, on peut affirmer $f(z) \neq 0$ et $\frac{1}{f(z)} = f(-z)$.

EXERCICE 20 analyse

Énoncé exercice 20

Mise à jour : 11/05/15

- 1. Donner la définition du rayon de convergence d'une série entière de la variable complexe.
- 2. Déterminer le rayon de convergence de chacune des séries entières suivantes

(a)
$$\sum \frac{(n!)^2}{(2n)!} z^{2n+1}$$
.

(b)
$$\sum n^{(-1)^n} z^n$$
.

Corrigé exercice 20

1. Soit $\sum a_n z^n$ une série entière.

Le rayon de convergence R de la série entière $\sum a_n z^n$ est l'unique élément de $\mathbb{R}^+ \cup \{+\infty\}$ défini par : $R = \sup \{r \ge 0 / (a_n r^n) \text{ est bornée} \}.$

On peut aussi définir le rayon de convergence de la manière suivante :

 $\exists ! R \in \mathbb{R}^+ \cup \{+\infty\} \text{ tel que}:$

i) $\forall z \in \mathbb{C}, |z| < R \Longrightarrow \sum a_n z^n$ converge absolument.

ii) $\forall z \in \mathbb{C}, |z| > R \Longrightarrow \sum a_n z^n$ diverge (grossièrement)

R est le rayon de convergence de la série entière $\sum a_n z^n$

Remarque : pour une série entière de la variable réelle, la définition est identique

2. (a) Notons R le rayon de convergence de $\sum \frac{(n!)^2}{(2n)!} z^{2n+1}$.

On pose,
$$\forall n \in \mathbb{N}, \forall z \in \mathbb{C}, u_n(z) = \frac{(n!)^2}{(2n)!} z^{2n+1}$$
.

Pour z = 0, $\sum u_n(0)$ converge.

Pour
$$z \neq 0$$
, $\left| \frac{u_{n+1}(z)}{u_n(z)} \right| = \frac{n+1}{4n+2} |z|^2$. Donc $\lim_{n \to +\infty} \left| \frac{u_{n+1}(z)}{u_n(z)} \right| = \frac{|z|^2}{4}$. D'après la règle de d'Alembert,

Pour |z| < 2, la série numérique $\sum u_n(z)$ converge absolument.

Pour |z| > 2, la série numérique diverge grossièrement.

On en déduit que R=2.

(b) Notons R le rayon de convergence de $\sum n^{(-1)^n} z^n$.

Posons, $\forall n \in \mathbb{N}, a_n = n^{(-1)^n}$.

On a, $\forall n \in \mathbb{N}, \forall z \in \mathbb{C}, |a_n z^n| \leq |n z^n|$ et le rayon de convergence de la série entière $\sum n z^n$ vaut 1. Donc $R \geqslant 1$. (*)

De même, $\forall n \in \mathbb{N}^*, \forall z \in \mathbb{C}, \left|\frac{1}{n}z^n\right| \leq |a_nz^n|$ et le rayon de convergence de la série $\sum \frac{1}{n}z^n$ vaut 1.

Donc $R \leq 1$. (**)

D'après (*) et (**), R = 1.

EXERCICE 21 analyse

Énoncé exercice 21

- 1. Donner la définition du rayon de convergence d'une série entière de la variable complexe.
- 2. Soit $(a_n)_{n\in\mathbb{N}}$ une suite bornée telle que la série $\sum a_n$ diverge. Quel est le rayon de convergence de la série entière $\sum a_n z^n$? Justifier.
- 3. Quel est le rayon de convergence de la série entière $\sum_{n\geq 1} \left(\sqrt{n}\right)^{(-1)^n} \ln\left(1+\frac{1}{\sqrt{n}}\right) z^n$?

Corrigé exercice 21

1. Soit $\sum a_n z^n$ une série entière.

Le rayon de convergence R de la série entière $\sum a_n z^n$ est l'unique élément de $\mathbb{R}^+ \cup \{+\infty\}$ défini par : $R = \sup\{r \geq 0 \ / (a_n r^n) \text{ est bornée}\}.$

On peut aussi définir le rayon de convergence de la manière suivante :

- $\exists ! R \in \mathbb{R}^+ \cup \{+\infty\} \text{ tel que} :$
- i) $\forall z \in \mathbb{C}, |z| < R \Longrightarrow \sum a_n z^n$ converge absolument.
- ii) $\forall z \in \mathbb{C}, |z| > R \Longrightarrow \sum a_n z^n$ diverge (grossièrement)

R est le rayon de convergence de la série entière $\sum a_n z^n$.

Pour une série entière de la variable réelle, la définition est identique.

2. La série numérique $\sum a_n z^n$ diverge pour z=1.

Donc
$$R \leq 1$$
. (*)

De plus, la suite $(a_n)_{n\in\mathbb{N}}$ étant bornée donc la suite $(a_n1^n)_{n\in\mathbb{N}}$ est bornée.

Donc $1 \in \{r \ge 0 / (a_n r^n) \text{ est bornée}\}.$

Donc $R \geqslant 1$. (**)

D'après (*) et (**), R = 1.

3. Notons R le rayon de convergence de $\sum_{n\geq 1}\left(\sqrt{n}\right)^{(-1)^n}\ln\left(1+\frac{1}{\sqrt{n}}\right)z^n.$

On pose,
$$\forall n \in \mathbb{N}^*$$
, $a_n = (\sqrt{n})^{(-1)^n} \ln \left(1 + \frac{1}{\sqrt{n}}\right)$.

$$\forall n \in \mathbb{N}^*, \ a_n \geqslant \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{\sqrt{n}} \right) = b_n.$$

Or
$$b_n \underset{+\infty}{\sim} \frac{1}{n}$$
 et $\sum_{n\geqslant 1} \frac{1}{n}$ diverge donc $\sum_{n\geqslant 1} b_n$ diverge.

Donc, par critère de minoration pour les séries à termes positifs, $\sum_{n\geqslant 1}a_n$ diverge . (***)

$$\text{De plus, } \forall \, n \in \mathbb{N}^*, \, |a_n| = a_n \leqslant \sqrt{n} \ln \left(1 + \frac{1}{\sqrt{n}} \right) \leqslant 1 \text{ car } \forall \, x \in [0, +\infty[, \, \ln(1+x) \leqslant x.]$$

Donc $(a_n)_{n\in\mathbb{N}}$ est bornée. (****)

D'après (***) et (****), on peut appliquer 2. et on en déduit que R=1.

EXERCICE 22 analyse

Énoncé exercice 22

Mise à jour : 11/05/15

- 1. Que peut-on dire du rayon de convergence de la somme de deux séries entières? Le démontrer.
- 2. Développer en série entière au voisinage de 0, en précisant le rayon de convergence, la fonction $f: x \longmapsto \ln{(1+x)} + \ln{(1-2x)}$.

La série obtenue converge-t-elle pour $x = \frac{1}{4}$? $x = \frac{1}{2}$? $x = -\frac{1}{2}$?

Corrigé exercice 22

1. On note R_a et R_b les rayons de convergence respectifs de $\sum a_n z^n$ et $\sum b_n z^n$

On note R est le rayon de convergence de la série entière somme de $\sum a_n z^n$ et $\sum b_n z^n$, c'est- à-dire le rayon de convergence de la série entière $\sum (a_n + b_n)z^n$.

On a toujours $R \geqslant \min(R_a, R_b)$.

De plus, si $R_a \neq R_b$ alors $R = \min(R_a, R_b)$.

Preuve

On suppose par exemple que $R_a \leqslant R_b$.

Premier cas : $R_a = 0$.

 $R \geqslant 0 = \min(R_a; R_b).$

Deuxième cas : $R_a > 0$.

Soit $z \in \mathbb{C}$ tel que $|z| < \min(R_a, R_b) = R_a$.

Comme $|z| < R_a$, alors $\sum a_n z^n$ converge absolument.

De même, comme $|z| < R_b$, alors $\sum b_n z^n$ converge absolument.

De plus, $\forall n \in \mathbb{N}, |(a_n + b_n)z^n| \leq |a_n z^n| + |b_n z^n|.$ (*)

Or $\sum (|a_n z^n| + [b_n z_n])$ converge car somme de deux séries convergentes.

Donc, par critère de majoration pour les séries à termes positifs et en utilisant (*), on en déduit que $\sum |(a_n+b_n)z^n|$ converge, c'est-à-dire $\sum (a_n+b_n)z^n$ converge absolument. Donc $z \in D_0(O,R)$.

On en déduit que $R \geqslant \min(R_a, R_b)$. (**)

On suppose maintenant que $R_a \neq R_b$, c'est-à-dire $R_a < R_b$

Soit $z \in \mathbb{C}$ tel que $R_a < |z| < R_b$.

 $|z| < R_b$, donc $\sum b_n z^n$ converge.

 $|z| > R_a$, donc $\sum a_n z^n$ diverge.

Donc $\sum (a_n + \overline{b_n})z^n$ diverge (somme d'une série convergente et d'une série divergente).

On en déduit que $|z| \ge R$.

On a donc prouvé que $\forall z \in \mathbb{C}, R_a < |z| < R_b \Rightarrow |z| \geqslant R$.

Donc $R \leq R_a$.

C'est-à-dire $R \leq \min(R_a, R_b)$. (***)

Donc, d'après (**) et (***), $R = \min(R_a, R_b)$.

2. Pour |x| < 1, $\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^n$.

Pour
$$|x| < \frac{1}{2}$$
, $\ln(1 - 2x) = -\sum_{n=1}^{+\infty} \frac{2^n}{n} x^n$.

Page 33

D'après 1., le rayon de convergence de $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} - 2^n}{n} x^n$ vaut $\frac{1}{2}$.

Donc le domaine de validité du développement en série entière à l'origine de f contient $\left|-\frac{1}{2},\frac{1}{2}\right|$ et est contenu dans $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Et, pour
$$|x| < \frac{1}{2}$$
, $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} - 2^n}{n} x^n$.

Pour
$$x = \frac{1}{4}$$
:

la série entière
$$\sum_{n\geqslant 1} \frac{(-1)^{n-1}-2^n}{n} x^n$$
 converge car $\left|\frac{1}{4}\right| < \frac{1}{2}$.

Pour
$$x = \frac{1}{2}$$
:

la série entière $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}-2^n}{n} x^n$ diverge car elle est la somme d'une série convergente ($\frac{1}{2}$ appartient au

disque de convergence de la série entière $\sum_{n\geq 1} \frac{(-1)^{n-1}}{n} x^n$) et d'une série divergente (série harmonique).

Pour
$$x = -\frac{1}{2}$$

la série entière $\sum_{n>1} \frac{(-1)^{n-1}-2^n}{n} x^n$ converge comme somme de deux séries convergentes.

En effet : $\text{D'une part}, \sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n} \left(-\frac{1}{2}\right)^n \text{ converge car } -\frac{1}{2} \text{ appartient au disque de convergence de la série entière } \\ \sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n} x^n . \\ \text{D'autre part}, \sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n} x^n .$

$$\sum_{n\geqslant 1} \frac{1}{2^n} \left(-\frac{1}{2}\right)^n = -\sum_{n\geqslant 1} \frac{(-1)^n}{n} \text{ converge d'après le critère spécial des séries alternées (la suite } (\frac{1}{n})_{n\in\mathbb{N}^*}$$
 est bien positive, décroissante et de limite nulle).

EXERCICE 23 analyse

Énoncé exercice 23

Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe telle que la suite $\left(\frac{|a_{n+1}|}{|a_n|}\right)$ admet une limite.

- 1. Démontrer que les séries entières $\sum a_n x^n$ et $\sum (n+1)a_{n+1}x^n$ ont le même rayon de convergence.
- 2. Démontrer que la fonction $x \mapsto \sum_{n=1}^{+\infty} a_n x^n$ est de classe \mathcal{C}^1 sur l'intervalle]-R,R[.

Corrigé exercice 23

1. Pour $x \neq 0$, posons $u_n(x) = a_n x^n$ et $v_n(x) = (n+1)a_{n+1}x^n$.

On pose
$$\ell = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

On pose $\ell = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$.

On a, alors, $\lim_{n \to \infty} \frac{|u_{n+1}(x)|}{|u_n(x)|} = \ell|x|$ et $\lim_{n \to \infty} \frac{|v_{n+1}(x)|}{|v_n(x)|} = \ell|x|$.

On en déduit que le rayon de convergence des deux séries entières $\sum a_n x^n$ et $\sum (n+1)a_{n+1}x^n$ vaut $R=1/\ell$ (avec $R=+\infty$ dans le cas $\ell=0$ et R=0 dans le cas $\ell=+\infty$).

 $\begin{array}{l} \text{2. Soit } R \text{ le rayon de convergence de } \sum_{} a_n z^n. \\ \text{On pose, } \forall \, n \in \mathbb{N}, \forall \, z \in]-R, R[, \, f_n(z) = a_n z^n. \\ \text{Soit } r \in [0, R[. \text{ On pose } D_r = [-r, r]. \end{array}$

- i) $\sum f_n$ converge simplement sur D_n
- ii) $\forall n \in \mathbb{N}, f_n$ est de classe C^1 sur D_r .
- iii) D'après 1., $\sum f'_n$ est une série entière de rayon de convergence R.

Donc, d'après le cours, $\sum f'_n$ converge normalement donc uniformément sur tout compact inclus dans]-R,R[, donc converge uniformément sur D_r .

On en déduit que $\forall r \in [0, R[, S: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est de classe \mathcal{C}^1 sur D_r .

Donc, S est de classe C^1 sur]-R, R[.

Mise à jour : 11/05/15

EXERCICE 24 analyse

Énoncé exercice 24

- 1. Déterminer le rayon de convergence de la série entière $\sum \frac{x^n}{(2n)!}$
- On pose $S(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(2n)!}$
- 2. Donner le développement en série entière en 0 de la fonction $x \mapsto \operatorname{ch}(x)$ et préciser le rayon de convergence.
- 3. (a) Déterminer S(x).
- (b) On considère la fonction f définie sur $\mathbb R$ par :

$$f(0) = 1$$
, $f(x) = \text{ch}\sqrt{x} \text{ si } x > 0$, $f(x) = \cos\sqrt{-x} \text{ si } x < 0$.

Démontrer que f est de classe C^{∞} sur \mathbb{R} .

Corrigé exercice 24

1. Pour $x \neq 0$, posons $u_n = \frac{x^n}{(2n)!}$

$$\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to +\infty} \frac{|x|}{(2n+2)(2n+1)} = 0.$$

On en déduit que la série entière $\sum \frac{x^n}{(2n)!}$ converge pour tout $x \in \mathbb{R}$ et donc $R = +\infty$.

- 2. $\forall x \in \mathbb{R}$, $\operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$ et le rayon de convergence du développement en série entière de ch est égal à $+\infty$.
- 3. (a) Pour $x \ge 0$, on peut écrire $x = t^2$ et alors $S(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(2n)!} = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!} = \operatorname{ch}(t) = \operatorname{ch}\sqrt{x}$. Pour x < 0, on peut écrire $x = -t^2$ et alors $S(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(2n)!} = \sum_{n=0}^{+\infty} \frac{(-1)^n t^{2n}}{(2n)!} = \cos(t) = \cos\sqrt{-x}$.
- (b) La fonction f n'est autre que la fonction S. S est de classe \mathcal{C}^{∞} sur \mathbb{R} car développable en série entière à l'origine avec un rayon de convergence égal à $+\infty$.

Donc f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

EXERCICE 25 analyse

Énoncé exercice 25

- 1. Démontrer que, pour tout entier naturel n, la fonction $t \longmapsto \frac{1}{1+t^2+t^ne^{-t}}$ est intégrable sur $[0,+\infty[$.
- 2. Pour tout $n \in \mathbb{N}$, pose $u_n = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2 + t^n e^{-t}}$. Calculer $\lim_{n \to +\infty} u_n$.

Corrigé exercice 25

1. $f_n: t \mapsto \frac{1}{1+t^2+t^n\mathrm{e}^{-t}}$ est définie et continue par morceaux sur $[0,+\infty[$.

De plus,
$$\forall t \in [0, +\infty[, |f_n(t)| \le \frac{1}{1+t^2} = \varphi(t).$$

Or $\varphi(t) \underset{+\infty}{\sim} \frac{1}{t^2}$ et $t \longmapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$, donc φ est intégrable sur $[1, +\infty[$.

Donc, par critère de majoration pour les fonctions positives, f_n est intégrable sur $[1, +\infty[$. Or f_n est continue sur [0, 1] donc f_n est intégrable sur $[0, +\infty[$.

2. i) La suite de fonctions (f_n) converge simplement sur $[0, +\infty[$ vers la fonction f définie par :

$$f(t) = \begin{cases} \frac{1}{1+t^2} & \text{si } t \in [0,1[\\ \frac{1}{2+e^{-1}} & \text{si } t = 1\\ 0 & \text{si } t \in]1, +\infty[\end{cases}$$

- ii) Les fonctions f_n et f sont continues par morceaux sur $[0, +\infty[$.
- iii) $\forall t \in [0, +\infty[, |f_n(t)| \leq \varphi(t) \text{ avec } \varphi \text{ intégrable sur } [0, +\infty[.$

Alors, d'après le théorème de convergence dominée, $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \int_0^{+\infty} f_n(t) dt = \int_0^{+\infty} f(t) dt$.

$$\text{Or } \int_0^{+\infty} f(t) \, \mathrm{d}t = \int_0^1 \frac{\, \mathrm{d}t}{1+t^2} = \frac{\pi}{4}.$$
 Donc,
$$\lim_{n \to +\infty} u_n = \frac{\pi}{4}.$$

Mise à jour : 11/05/15

EXERCICE 26 analyse

Énoncé exercice 26

Pour tout entier $n \ge 1$, on pose $I_n = \int_{1-t^2}^{+\infty} \frac{1}{(1+t^2)^n} dt$.

- 1. Justifier que I_n est bien définie.
- 2. Étudier la monotonie de la suite $(I_n)_{n\in\mathbb{N}^*}$ et déterminer sa limite.
- 3. La série $\sum_{n=1}^{\infty} (-1)^n I_n$ est-elle convergente?

Corrigé exercice 26

Posons: $\forall n \in \mathbb{N}^*, \forall t \in [0, +\infty[, f_n(t) = \frac{1}{(1+t^2)^n}]$

1. $\forall n \in \mathbb{N}^*, f_n \text{ est continue sur } [0, +\infty[$.

De plus,
$$|f_n(t)| \underset{+\infty}{\sim} \frac{1}{t^{2n}}$$
.

Or $n \ge 1$, alors $t \longmapsto \frac{1}{t^{2n}}$ est intégrable sur $[1, +\infty[$.

Donc, par règle d'équivalence pour les fonctions positives, f_n est intégrable sur $[1, +\infty]$.

Or f_n est continue sur [0,1], donc f_n est intégrable sur $[0,+\infty[$.

$$2. \ \forall \, t \in [0,+\infty[,\, \frac{1}{(1+t^2)^{n+1}} \leqslant \frac{1}{(1+t^2)^n} \text{ car } 1+t^2 \geqslant 1.$$

Donc en intégrant, $\forall n \in \mathbb{N}^*, I_{n+1} \leq I_n$

Donc $(I_n)_{n \in \mathbb{N}^*}$ est décroissante.

Remarque : $(I_n)_{n\in\mathbb{N}^*}$ est décroissante et clairement positive ce qui nous assure la convergence de la suite $(I_n)_{n \in \mathbb{N}^*}$.

Déterminons la limite de la suite $(I_n)_{n\in\mathbb{N}^*}$.

- i) $\forall n \in \mathbb{N}^*$, f_n est continue par morceaux sur $[0, +\infty[$.
- ii) La suite de fonctions $(f_n)_{n\geq 1}$ converge simplement sur $[0,+\infty[$ vers la fonction f définie sur $[0;+\infty[$ par : f(0) = 1 et $\forall x \in]0, +\infty[, f(x) = 0.$

De plus,
$$f$$
 est continue par morceaux sur $[0, +\infty[$.
iii) $\forall t \in [0, +\infty[$, $\forall n \in \mathbb{N}^*, |u_n(t)| \leq \frac{1}{1+t^2} = \varphi(t)$ avec φ intégrable sur $[0, +\infty[$.

En effet, $\varphi(t) \underset{+\infty}{\sim} \frac{1}{t^2}$ et $t \longmapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$, donc φ est intégrable sur $[1, +\infty[$

Or φ est continue sur [0,1], donc φ est intégrable sur $[0,+\infty[$.

Donc, d'après le théorème de convergence dominée,

$$\lim_{n \to +\infty} I_n = \lim_{n \to +\infty} \int_0^{+\infty} f_n(t) dt = \int_0^{+\infty} f(t) dt = 0.$$

3. D'après les questions précédentes, la suite $(I_n)_{n\in\mathbb{N}^*}$ est positive, décroissante et converge vers 0. Donc, par application du théorème spécial des séries alternées, on peut affirmer la convergence de la série

$$\sum_{n\geqslant 1} (-1)^n I_n.$$

EXERCICE 27 analyse

Énoncé exercice 27

Mise à jour : 11/05/15

Pour tout $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{e^{-x}}{1 + n^2 x^2}$ et $u_n = \int_{-1}^{1} f_n(x) dx$.

- 1. Étudier la convergence simple de la suite de fonctions (f_n) sur [0,1].
- 2. Soit $a \in [0,1[$. La suite de fonctions (f_n) converge-t-elle uniformément sur [a,1]?
- 3. La suite de fonctions (f_n) converge-t-elle uniformément sur [0,1]?
- 4. Trouver la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$.

Corrigé exercice 27

1. Soit $x \in [0, 1]$.

Si
$$x = 0$$
, $f_n(0) = 1$.

Si $x \in]0,1]$, pour n au voisinage de $+\infty$, $f_n(x) \sim \frac{e^{-x}}{r^2} \frac{1}{r^2}$, donc $\lim_{x \to \infty} f_n(x) = 0$.

On en déduit que la suite de fonctions (f_n) converge simplement sur [0,1] vers la fonction f définie par :

Mise à jour : 11/05/15

$$f(x) = \begin{cases} 0 & \text{si } x \in]0,1] \\ 1 & \text{si } x = 0 \end{cases}$$

2. Soit $a \in [0; 1[$.

 $\forall n \in \mathbb{N}^*, \forall x \in [a,1], |f_n(x) - f(x)| = f_n(x) \leqslant \frac{e^{-a}}{1 + n^2 a^2}$ (majoration indépendante de x).

Donc $\sup_{t \in [a,1]} |f_n(t) - f(t)| \le \frac{e^{-a}}{1 + n^2 a^2}.$

$$\operatorname{Or} \lim_{n \to +\infty} \frac{\mathrm{e}^{-a}}{1+n^2 a^2} = 0, \, \operatorname{donc} \, \lim_{n \to +\infty} \sup_{t \in [a,1]} |f_n(t) - f(t)| = 0$$

On en déduit que (f_n) converge uniformément vers f sur [a, 1]

- 3. Les fonctions f_n étant continues sur [0,1] et la limite simple f ne l'étant pas, on peut assurer qu'il n'y a pas convergence uniforme sur [0,1].
- 4. i) Les fonctions f_n sont continues par morceaux sur [0,1].
 - ii) (f_n) converge simplement vers f sur [0,1], continue par morceaux sur [0,1].
 - iii) De plus, $\forall x \in [0,1], |f_n(x)| \leq e^{-x} \leq 1 = \varphi(x)$ avec $\varphi: [0,1] \to \mathbb{R}^+$ continue par morceaux et intégrable

D'après le théorème de convergence dominée, on peut donc affirmer que :

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx = 0.$$

EXERCICE 28 analyse

Énoncé exercice 28

N.B. : les deux questions sont indépendantes.

- 1. La fonction $x \mapsto \frac{e^{-x}}{\sqrt{x^2 4}}$ est-elle intégrable sur $]2, +\infty[?]$

2. Soit a un réel strictement positif. La fonction $x \longmapsto \frac{\ln x}{\sqrt{1+x^{2a}}}$ est-elle intégrable sur $]0, +\infty[$?

Corrigé exercice 28

1. Soit
$$f: x \longmapsto \frac{e^{-x}}{\sqrt{x^2 - 4}}$$
.
 f est continue sur $]2, +\infty[$.

$$f(x) = \frac{e^{-x}}{\sqrt{(x-2)(x+2)}} \approx \frac{e^{-2}}{2} \times \frac{1}{(x-2)^{\frac{1}{2}}}$$

$$\begin{split} f(x) &= \frac{e^{-x}}{\sqrt{(x-2)(x+2)}} \approx \frac{e^{-2}}{2} \times \frac{1}{(x-2)^{\frac{1}{2}}}. \\ \text{Or } x &\longmapsto \frac{1}{(x-2)^{\frac{1}{2}}} \text{ est intégrable sur } [2,3] \text{ (fonction de Riemann intégrable sur } [2,3] \text{ car } \frac{1}{2} < 1). \end{split}$$

Mise à jour : 11/05/15

Donc, par règle d'équivalence pour les fonctions positives, f est intégrable sur [2,3]. (*)

$$f(x) \underset{+\infty}{\sim} \frac{e^{-x}}{x} = g(x).$$

Or
$$\lim_{x \to +\infty} x^2 g(x) = 0$$
 donc, au voisinage de $+\infty$, $g(x) = o(\frac{1}{x^2})$.

Comme $x \mapsto \frac{1}{x^2}$ est intégrable sur $[3, +\infty[$, on en déduit que g est intégrable sur $[3, +\infty[$. Donc, par règle d'équivalence pour les fonctions positives, f est intégrable sur $[3, +\infty[$. (**)

D'après (*) et (**), f est intégrable sur $[2, +\infty[$.

2. Soit a un réel strictement positif.
On pose
$$\forall x \in]0, +\infty[, f(x) = \frac{\ln x}{\sqrt{1 + x^{2a}}}$$

f est continue sur $]0, +\infty[$.

$$|f(x)| \sim |\ln x| = g(x).$$

Or
$$\lim_{x\to 0} x^{\frac{1}{2}}g(x) = 0$$
 donc, au voisinage de $0, g(x) = o\left(\frac{1}{x^{\frac{1}{2}}}\right)$.

Or
$$x \mapsto \frac{1}{x^{\frac{1}{2}}}$$
 est intégrable sur $]0,1]$ (fonction de Riemann intégrable sur $]0,1]$ car $\frac{1}{2} < 1$).

Donc q est intégrable sur [0,1].

Donc, par règle d'équivalence pour les fonctions positives, |f| est intégrable sur [0,1].

Donc, f est intégrable sur [0,1] (*)

$$f(x) \underset{+\infty}{\sim} \frac{\ln x}{x^a} = h(x).$$

Premier cas : si $a > 1$.

$$\lim_{x\to +\infty} x^{\frac{1+a}{2}} h(x) = \lim_{x\to +\infty} x^{\frac{1-a}{2}} \ln x = 0, \text{ donc, au voisinage de } +\infty, h(x) = o\left(\frac{1}{x^{\frac{1+a}{2}}}\right).$$

Or
$$x \mapsto \frac{1}{x^{\frac{1+a}{2}}}$$
 est intégrable sur $[1, +\infty[$ (fonction de Riemann intégrable sur $[1, +\infty[$ car $\frac{1+a}{2} > 1)$.

Donc, h est intégrable sur $[1, +\infty[$.

Donc, par règle d'équivalence pour les fonctions positives, f est intégrable sur $[1, +\infty[$. (**)

D'après (*) et (**), f est intégrable sur $]0, +\infty[$.

Deuxième cas : si
$$a \le 1$$

$$\forall x \in [e, +\infty[, f(x)] \ge \frac{1}{x^a}$$
.

Or $x \longmapsto \frac{1}{x^a}$ non intégrable sur $[e, +\infty[$.(fonction de Riemann avec $a \leqslant 1$) Donc, par règle de minoration pour les fonctions positives, f non intégrable sur $[e, +\infty[$

Mise à jour : 11/05/15

Donc, f non intégrable sur $]0, +\infty[$.

CC BY-NC-SA 3.0 FR Page 41 CC BY-NC-SA 3.0 FR Page 42

EXERCICE 29 analyse

Énoncé exercice 29

On pose: $\forall x \in]0, +\infty[, \forall t \in]0, +\infty[, f(x,t) = e^{-t}t^{x-1}]$.

1. Démontrer que : $\forall x \in]0, +\infty[$, la fonction $t \mapsto f(x,t)$ est intégrable sur $]0, +\infty[$.

On pose alors :
$$\forall x \in]0, +\infty[$$
, $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- 2. Démontrer que : $\forall x \in]0, +\infty[, \Gamma(x+1) = x\Gamma(x).$
- 3. Démontrer que Γ est de classe C^1 sur $]0, +\infty[$ et exprimer $\Gamma'(x)$ sous forme d'intégrale.

Corrigé exercice 29

1. Soit $x \in]0, +\infty[$.

La fonction $t \mapsto e^{-t}t^{x-1}$ est définie, positive et continue par morceaux sur $]0, +\infty[$.

$$f(x,t) \underset{t \to 0^+}{\sim} t^{x-1}$$
 et $t \mapsto t^{x-1} = \frac{1}{t^{1-x}}$ est intégrable sur $]0,1]$ (fonction de Riemann avec $1-x < 1$). Donc, par critère d'équivalence pour les fonctions positives, $t \mapsto f(x,t)$ est intégrable sur $]0,1]$. (*)

Mise à jour : 11/05/15

De plus,
$$\lim_{t\to +\infty} t^2 f(x,t) = 0$$
, donc, pour t au voisinage de $+\infty$, $f(x,t) = o(\frac{1}{t^2})$. Or $t\longmapsto \frac{1}{t^2}$ est intégrable sur $[1,+\infty[$ (fonction de Riemann intégrable). Donc $t\longmapsto f(x,t)$ est intégrable sur $[1,+\infty[$. (**)

Or
$$t \longmapsto \frac{1}{t^2}$$
 est intégrable sur $[1, +\infty[$ (fonction de Riemann intégrable)

Donc
$$t \mapsto^{\iota} f(x,t)$$
 est intégrable sur $[1,+\infty[$. (**

Donc, d'après (*) et (**),
$$t \mapsto f(x,t)$$
 est intégrable sur $]0,+\infty[$.

2. Par intégration par parties
$$\int_{\varepsilon}^{A} \mathrm{e}^{-t} t^{x} \, \mathrm{d}t = \left[-\mathrm{e}^{-t} t^{x} \right]_{\varepsilon}^{A} + x \int_{\varepsilon}^{A} \mathrm{e}^{-t} t^{x-1} \, \mathrm{d}t.$$
 On passe ensuite à la limite quand $\varepsilon \to 0^{+}$ et $A \to +\infty$ pour obtenir la relation demandée.

3. i)
$$\forall t \in]0, +\infty[$$
, la fonction $x \mapsto f(x,t)$ est dérivable et $\forall (x,t) \in]0, +\infty[^2, \frac{\partial f}{\partial x}(x,t) = (\ln t)e^{-t}t^{x-1}$.

ii) Pour tout
$$x>0, t\mapsto \frac{\partial f}{\partial x}(x,t)$$
 est continue par morceaux sur $]0,+\infty[$.
iii) Pour tout $t>0, x\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur $]0,+\infty[$.
iv) Pour tout $[a,b]\subset]0,+\infty[$ et $\forall\,(t,x)\in]0,+\infty[\times [a,b]:$
$$\left|\frac{\partial f}{\partial x}(x,t)\right|\leqslant \varphi(t) \text{ avec } \varphi(t)=\left\{\begin{array}{ll} |\ln t|\mathrm{e}^{-t}t^{a-1} & \mathrm{si} & t\in]0,1[\\ |\ln t|\mathrm{e}^{-t}t^{b-1} & \mathrm{si} & t\in [1,+\infty[\end{array}\right.$$

iii) Pour tout
$$t > 0$$
, $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur $]0, +\infty$

iv) Pour tout
$$[a,b] \subset]0,+\infty[$$
 et $\forall (t,x) \in]0,+\infty[\times [a,b] :$

$$\left|\frac{\partial f}{\partial x}(x,t)\right|\leqslant \varphi(t) \text{ avec } \varphi(t)=\left\{\begin{array}{ll} |\ln t|\mathrm{e}^{-t}t^{a-1} & \mathrm{si} & t\in]0,1[\\ |\ln t|\mathrm{e}^{-t}t^{b-1} & \mathrm{si} & t\in [1,+\infty] \end{array}\right.$$

avec φ continue par morceaux et intégrable sur $]0, +\infty$

$$\varphi(t) \underset{0+}{\sim} |\ln t| t^{a-1} = \varphi_1(t) \text{ et } \lim_{t \to 0^+} t^{1-\frac{a}{2}} \varphi_1(t) = \lim_{t \to 0} t^{\frac{a}{2}} |\ln t| = 0.$$

Donc, au voisinage de
$$0^+$$
, $\varphi_1(t) = o\left(\frac{1}{\frac{a}{t-\frac{a}{2}}}\right)$

Or
$$t \mapsto \frac{1}{t^{1-\frac{a}{2}}}$$
 est intégrable sur]0,1[(fonction de Riemann avec $1-\frac{a}{2} < 1$).

Donc, par critère d'équivalence pour les fonctions positives, φ est intégrable sur]0,1[. (*)

$$\lim_{t \to +\infty} t^2 \varphi(t) = 0.$$

Donc, pour
$$t$$
 au voisinage de $+\infty$, $\varphi(t) = o(\frac{1}{t^2})$.

Or,
$$t \longmapsto \frac{1}{t^2}$$
 est intégrable sur $[1, +\infty[$ (fonction de Riemann intégrable).

Donc
$$\varphi$$
 est intégrable sur $[1, +\infty[$. (**)

D'après (*) et (**), φ est intégrable sur $]0, +\infty[$.

D'où, d'après le théorème de dérivation des intégrales à paramètres, Γ est de classe \mathcal{C}^1 sur $]0, +\infty[$.

De plus,
$$\forall x \in]0, +\infty[$$
, $\Gamma'(x) = \int_0^{+\infty} (\ln t) e^{-t} t^{x-1} dt$.

EXERCICE 30 analyse

Énoncé exercice 30

- 1. Énoncer le théorème de dérivation sous le signe intégrale.
- 2. Démontrer que la fonction $f: x \longmapsto \int_{-\infty}^{+\infty} e^{-t^2} \cos(xt) dt$ est de classe C^1 sur \mathbb{R} .
- 3. (a) Trouver une équation différentielle linéaire (E) d'ordre 1 dont f est solution.
- (b) Résoudre (E).

Corrigé exercice 30

1. Soit $u:(x,t)\mapsto u(x,t)$ une fonction définie de $X\times I$ vers $\mathbb C$, avec X et I intervalles contenant au moins deux points de \mathbb{R} .

Mise à jour : 11/05/15

On suppose que :

i) $\forall x \in X, t \longmapsto u(x,t)$ est continue par morceaux et intégrable sur I.

On pose alors $\forall x \in X$, $f(x) = \int_I u(x,t) dt$.

- ii) u admet une dérivée partielle $\frac{\partial u}{\partial x}$ sur $X \times I$ vérifiant :
- $\forall x \in X, t \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue par morceaux sur I. $\forall t \in I, x \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue sur X.
- iii) il existe $\varphi: I \to \mathbb{R}^+$ continue par morceaux, positive et intégrable sur I vérifiant :

$$\forall (x,t) \in X \times I, \left| \frac{\partial u}{\partial x}(x,t) \right| \leqslant \varphi(t).$$

Alors la fonction f est de classe \mathcal{C}^1 sur X et $\forall x \in X, f'(x) = \int_{\mathbb{R}^d} \frac{\partial u}{\partial x}(x,t) dt$.

- 2. On pose $\forall (x,t) \in \mathbb{R} \times [0,+\infty[, u(x,t) = e^{-t^2}\cos(xt).$
- i) $\forall x \in \mathbb{R}, t \longmapsto u(x,t)$ est continue sur $[0,+\infty[$.

De plus, $\forall x \in \mathbb{R}, |u(x,t)| \leq e^{-t^2}$.

Or $\lim_{t \to +\infty} t^2 e^{-t^2} = 0$, donc, au voisinage de $+\infty$, $e^{-t^2} = o\left(\frac{1}{t^2}\right)$.

- $\begin{array}{l} \stackrel{t\to +\infty}{\text{Donc, }} t \longmapsto u(x,t) \text{ est intégrable sur } [0,+\infty[.\\ \text{ii) } \forall \, (x,t) \in \mathbb{R} \times [0,+\infty[,\,\frac{\partial u}{\partial x}(x,t) = -t e^{-t^2} \sin(xt). \end{array}$
- $-\forall x \in \mathbb{R}, t \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue par morceaux sur $[0,+\infty[$.
- $\forall t \in [0, +\infty], x \mapsto \frac{\partial u}{\partial x}(x, t) \text{ est continue sur } \mathbb{R}.$
- -iii) $\forall (x,t) \in \mathbb{R} \times [0,+\infty[,]\frac{\partial u}{\partial x}(x,t)] \leqslant t e^{-t^2} = \varphi(t)$ avec φ continue par morceaux, positive et intégrable sur $[0, +\infty[$.

En effet, $\lim_{t\to +\infty} t^2 \varphi(t) = 0$ donc, au voisinage de $+\infty$, $\varphi(t) = o(\frac{1}{t^2})$.

On en déduit que φ est intégrable sur $[1, +\infty]$ et comme elle est continue sur [0, 1], alors φ est bien intégrable sur $[0, +\infty[$.

Donc f est de classe C^1 sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, f'(x) = \int_0^{+\infty} -te^{-t^2} \sin(xt) dt$$

3. (a) On a, $\forall x \in \mathbb{R}$, $f'(x) = \int_{0}^{+\infty} -te^{-t^2} \sin(xt) dt$.

Procédons à une intégration par parties. Soit $A \ge 0$.

$$\int_{0}^{A} -t e^{-t^{2}} \sin(xt) dt = \left[\frac{1}{2} e^{-t^{2}} \sin(xt) \right]_{0}^{A} - \int_{0}^{A} \frac{x}{2} e^{-t^{2}} \cos(xt) dt$$

En passant à la limite quand $A \to +\infty$, on obtient $f'(x) + \frac{x}{2}f(x) = 0$. Donc f est solution de l'équation différentielle $(E): y' + \frac{x}{2}y = 0$.

(b) Les solutions de (E) sont les fonctions y définies par $y(x) = Ae^{-\frac{x}{4}}$, avec $A \in \mathbb{R}$.

EXERCICE 31 analyse

Énoncé exercice 31

- 1. Déterminer une primitive de $x \mapsto \cos^4 x$.
- 2. Résoudre sur $\mathbb R$ l'équation différentielle : $y'' + y = \cos^3 x$ en utilisant la méthode de variation des constantes

Corrigé exercice 31

- 1. En linéarisant $\cos^4 x$, on obtient $\cos^4 x = \frac{1}{8}(\cos(4x) + 4\cos(2x) + 3)$. Donc, $x \longmapsto \frac{1}{32}\sin(4x) + \frac{1}{4}\sin(2x) + \frac{3}{8}x$ est une primitive de $x \longmapsto \cos^4 x$.
- 2. Notons (E) l'équation différentielle $y^{\prime\prime}+y=\cos^3x$.

C'est une équation différentielle linéaire d'ordre 2 à coefficients constants.

Les solutions de l'équation homogène associée sont les fonctions y définies par : $y(x) = \lambda \cos x + \mu \sin x$.

Par la méthode de variation des constantes,

on cherche une solution particulière de (E) de la forme $y_p(x) = \lambda(x)\cos x + \mu(x)\sin x$ avec λ, μ fonctions dérivables vérifiant : $\begin{cases} \lambda'(x)\cos x + \mu'(x)\sin x = 0 \\ -\lambda'(x)\sin x + \mu'(x)\cos x = \cos^3 x \end{cases}$ i.e. $\begin{cases} \lambda'(x) = -\sin x\cos^3 x \\ \mu'(x) = \cos^4 x \end{cases}$.

$$\lambda(x) = \frac{1}{4} \cos^4 x$$
 convient.

D'après la question 1., $\mu(x) = \frac{1}{32}\sin(4x) + \frac{1}{4}\sin(2x) + \frac{3}{8}x$ convient

On en déduit que la fonction y_p définie par $y_p(x) = \frac{1}{4}\cos^5 x + \left(\frac{1}{32}\sin(4x) + \frac{1}{4}\sin(2x) + \frac{3}{8}x\right)\sin x$ est une solution particulière de (E).

Finalement, les solutions de l'équation (E) sont les fonctions y définies par : $y(x) = \lambda \cos x + \mu \sin x + y_p(x)$, avec $(\lambda, \mu) \in \mathbb{R}^2$.

EXERCICE 32 analyse

Énoncé exercice 32

Mise à jour : 11/05/15

Soit l'équation différentielle : x(x-1)y'' + 3xy' + y = 0.

- 1. Trouver les solutions de cette équation différentielle développables en série entière sur un intervalle]-r,r[de \mathbb{R} , avec r>0.
- Déterminer la somme des séries entières obtenues.
- 2. Est-ce que toutes les solutions de x(x-1)y'' + 3xy' + y = 0 sur]0;1[sont les restrictions d'une fonction développable en série entière sur]-1,1[?

Corrigé exercice 32

1. Soit $\sum a_n x^n$ une série entière de rayon de convergence R > 0 et de somme S.

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n, \ S'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} \text{ et } S''(x) = \sum_{n=2}^{+\infty} n(n-1) a_n x^{n-2} = \sum_{n=1}^{+\infty} (n+1) n a_{n+1} x^{n-1}.$$

Donc
$$x(x-1)S''(x) + 3xS'(x) + S(x) = \sum_{n=0}^{+\infty} ((n+1)^2 a_n - n(n+1)a_{n+1}) x^n$$
.

Par unicité des coefficients d'un développement en série entière, la fonction S est solution sur]-R,R[de l'équation étudiée si, et seulement si, $\forall n \in \mathbb{N}, (n+1)^2a_n - n(n+1)a_{n+1} = 0.$

C'est-à-dire : $\forall n \in \mathbb{N}, na_{n+1} = (n+1)a_n$.

Ce qui revient à : $\forall n \in \mathbb{N}, a_n = na_1$.

Le rayon de convergence de la série entière $\sum nx^n$ étant égal à 1, on peut affirmer que les fonctions développables en série entière solutions de l'équation sont les fonctions :

$$x\mapsto a_1\sum_{n=0}^{+\infty}nx^n=a_1x\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{1-x}\right)=\frac{a_1x}{(1-x)^2}\text{ définies sur }]-1,1[,\text{ avec }a_1\in\mathbb{R}.$$

2. Notons (E) l'équation x(x-1)y'' + 3xy' + y = 0.

Prouvons que les solutions de (E) sur]0;1[ne sont pas toutes développables en série entière à l'origine. Raisonnons par l'absurde.

Si toutes les solutions de (E) sur]0; 1[étaient développables en série entière à l'origine alors, d'après 1., l'ensemble des solutions de (E) sur]0; 1[serait égal à la droite vectorielle $\mathrm{Vect}(f)$ où f est la fonction définie par $\forall \, x \in]0; 1[, \, f(x) = \frac{x}{(1-x)^2}.$

Or, d'après le cours, comme les fonctions $x \mapsto x(x-1)$, $x \mapsto 3x$ et $x \mapsto 1$ sont continues sur]0;1[et que la fonction $x \mapsto x(x-1)$ ne s'annule pas sur]0;1[, l'ensemble des solutions de (E) sur]0;1[est un plan vectoriel

D'où l'absurdité.

CC BY-NC-SA 3.0 FR Page 47 CC BY-NC-SA 3.0 FR Page 48

EXERCICE 33 analyse

Énoncé exercice 33

On pose: $\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ et f(0,0) = 0.

- Démontrer que f est continue sur R².
- 2. Démontrer que f admet des dérivées partielles en tout point de \mathbb{R}^2 .
- 3. f est-elle de classe C^1 sur \mathbb{R}^2 ? Justifier.

Corrigé exercice 33

1. Par opérations sur les fonctions continues, f est continue sur l'ouvert $\mathbb{R}^2 \setminus \{(0,0)\}$.

On considère la norme euclidienne sur \mathbb{R}^2 définie par $\forall (x,y) \in \mathbb{R}^2$, $||(x,y)||_2 = \sqrt{x^2 + y^2}$.

On a $\forall (x, y) \in \mathbb{R}^2$, $|x| \leq ||(x, y)||_2$ et $|y| \leq ||(x, y)||_2$.

On en déduit que $\forall (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\},\$

$$|f(x,y) - f(0,0)| = \frac{|x||y|}{||(x,y)||_2} \le \frac{\left(||(x,y)||_2\right)^2}{||(x,y)||_2} = ||(x,y)||_2 \underset{(x,y) \to (0,0)}{\longrightarrow} 0.$$

On en déduit que f est continue en (0,0)

Ainsi f est continue sur \mathbb{R}^2 .

2. Par opérations sur les fonctions admettant des dérivées partielles, f admet des dérivées partielles en tout point de l'ouvert $\mathbb{R}^2 \setminus \{(0,0)\}.$

En (0,0):

 $\lim_{t\to 0} \frac{1}{t} (f(t,0) - f(0,0)) = 0$, donc f admet une dérivée partielle en (0,0) par rapport à sa première variable et $\frac{\partial f}{\partial x}(0,0) = 0$.

De même, $\lim_{t\to 0} \frac{1}{t} (f(0,t) - f(0,0)) = 0$. Donc f admet une dérivée partielle en (0,0) par rapport à sa seconde variable et $\frac{\partial f}{\partial u}(0,0) = 0$.

3. D'après le cours, f est de classe C^1 sur \mathbb{R}^2 si et seulement si $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ existent et sont continues sur \mathbb{R}^2 .

Or,
$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \frac{\partial f}{\partial x}(x,y) = \frac{y^3}{(x^2 + y^2)^{\frac{3}{2}}}.$$

On remarque que $\forall x > 0$, $\frac{\partial f}{\partial x}(x,x) = \frac{1}{2\sqrt{2}}$.

Donc,
$$\lim_{x\to 0^+} \frac{\partial f}{\partial x}(x,x) = \frac{1}{2\sqrt{2}} \neq \frac{\partial f}{\partial x}(0,0)$$
.

On en déduit que $\frac{\partial f}{\partial x}$ n'est pas continue en (0,0).

Donc f n'est pas de classe C^1 sur \mathbb{R}^2 .

EXERCICE 34 analyse

Énoncé exercice 34

Mise à jour : 11/05/15

Soit A une partie non vide d'un espace vectoriel normé E.

- 1. Rappeler la définition d'un point adhérent à A, en termes de voisinages ou de boules.
- 2. Démontrer que : $x \in \bar{A} \iff \exists (x_n)_{n \in \mathbb{N}} \text{ telle que}, \forall n \in \mathbb{N}, x_n \in A \text{ et } \lim x_n = x.$
- 3. Démontrer que si A est un sous-espace vectoriel de E alors \bar{A} est un sous-espace vectoriel de E
- Démontrer que si A est convexe alors \(\bar{A}\) est convexe.

Corrigé exercice 34

- 1. Soit A une partie non vide de E.
- $\mathcal{V}(a)$ désigne l'ensemble des voisinages de a.

 $\forall r > 0$, $B_0(a,r)$ désigne la boule ouverte de centre a et de rayon r.

Soit
$$a \in A$$
.

 $a \in \bar{A} \iff \forall V \in \mathcal{V}(a), \ V \cap A \neq \emptyset.$

Ou encore:

 $a \in \bar{A} \iff \forall r > 0, B_0(a, r) \cap A \neq \emptyset.$

2. Soit $x \in \overline{A}$.

Prouvons que $\exists (x_n)_{n\in\mathbb{N}}$ telle que, $\forall n\in\mathbb{N}, \ x_n\in A$ et $\lim_{n\to+\infty} x_n=x$.

Par hypothèse, $\forall r > 0, B_0(a, r) \cap A \neq \emptyset$.

Donc
$$\forall n \in \mathbb{N}^*, B_0(x, \frac{1}{n}) \cap A \neq \emptyset$$

C'est-à-dire
$$\forall n \in \mathbb{N}^*, \exists x_n \in B_0(x, \frac{1}{x}) \cap A$$

C'est-à-dire $\forall n \in \mathbb{N}^*, \ \exists \ x_n \in B_0(x, \frac{1}{n}) \cap A.$ On fixe alors, pour tout entier naturel n non nul, un tel x_n .

Ainsi, la suite $(x_n)_{n\in\mathbb{N}^*}$ est une suite à valeurs dans A et $\forall n\in\mathbb{N}^*, ||x_n-x||<\frac{1}{n}$

C'est-à-dire la suite $(x_n)_{n\in\mathbb{N}^*}$ converge vers x.

Soit $x \in E$. On suppose que $\exists (x_n)_{n \in \mathbb{N}}$ telle que $\forall n \in \mathbb{N}, x_n \in A$ et $\lim_{n \to \infty} x_n = x$.

Prouvons que $x \in \bar{A}$.

Soit $V \in \mathcal{V}(x)$. Alors, $\exists \varepsilon > 0$ tel que $B_0(x, \varepsilon) \subset V$.

On fixe un tel ε strictement positif.

 $\lim x_n = x \text{ donc } \exists N \in \mathbb{N} \text{ tel que } \forall n \in \mathbb{N}, n \geqslant N \Longrightarrow ||x_n - x|| < \varepsilon.$

On fixe un tel entier N.

Donc, comme (x_n) est à valeurs dans A, on en déduit que $\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow x_n \in B_0(x, \varepsilon) \cap A$.

Or $B_0(x,\varepsilon) \subset V$, donc $\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow x_n \in V \cap A$, c'est-à-dire $V \cap A \neq \emptyset$.

On peut en conclure que $x \in \bar{A}$.

3. $\bar{A} \subset E$ et $0_E \in \bar{A}$ car $0_E \in A$ et $A \subset \bar{A}$.

Soit $(x, y) \in (\bar{A})^2$ et $\lambda \in \mathbb{K}$.

D'après 1., Il existe deux suites (x_n) et (y_n) d'éléments de A convergeant respectivement vers x et y.

On a alors $\lim_{n \to +\infty} (x_n + \lambda y_n) = x + \lambda y$.

Or A est un sous-espace vectoriel de E et $\forall n \in \mathbb{N}, (x_n, y_n) \in A^2$, donc $x_n + \lambda y_n \in A$.

On en déduit que la suite $(x_n + \lambda y_n)_{n \in \mathbb{N}}$ est à valeurs dans A et converge vers $x + \lambda y$. On a bien $x + \lambda y \in \bar{A}$.

4. On suppose que A partie non vide et convexe de E. Prouvons que \overline{A} est convexe.

Soit
$$(x,y) \in (\overline{A})^2$$
. Soit $t \in [0,1]$.

Prouvons que $z = tx + (1-t)y \in \overline{A}$.

 $x \in \overline{A}$, donc il existe une suite (x_n) à valeurs dans A telle que $\lim_{n \to +\infty} x_n = x$.

 $y \in \overline{A}$, donc il existe une suite (y_n) à valeurs dans A telle que $\lim y_n = y$.

On pose $\forall n \in \mathbb{N}, z_n = tx_n + (1-t)y_n$. $\forall n \in \mathbb{N}, \ x_n \in A, \ y_n \in A \text{ et } A \text{ est convexe, donc } z_n \in A. \text{ De plus } \lim_{n \to +\infty} z_n = z.$

Donc z est limite d'une suite à valeurs dans A, c'est-à-dire $z \in \overline{A}$.

EXERCICE 35 analyse

Énoncé exercice 35

Mise à jour : 11/05/15

E et F désignent deux espaces vectoriels normés.

1. Soient f une application de E dans F et a un point de E.

On considère les propositions suivantes :

- **P1.** f est continue en a.
- **P2.** Pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E telle que $\lim_{n\to+\infty}x_n=a$, alors $\lim_{n\to+\infty}f(x_n)=f(a)$.

Prouver que les propositions P1 et P2 sont équivalentes.

2. Soit A une partie dense dans E, et soient f et g deux applications continues de E dans F. Démontrer que si, pour tout $x \in A$, f(x) = g(x), alors f = g.

Corrigé exercice 35

1. Prouvons que $P1. \Longrightarrow P2.$

Supposons f continue en a.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E convergeant vers a. Prouvons que $\lim_{n\to+\infty} f(x_n) = f(a)$.

Par continuité de f en a, $\exists \alpha > 0 / \forall x \in E, ||x - a|| \leqslant \alpha \Rightarrow ||f(x) - f(a)|| \leqslant \varepsilon$. (*)

On fixe un tel α strictement positif.

Par convergence de $(x_n)_{n\in\mathbb{N}}$ vers $a, \exists N \in \mathbb{N} / \forall n \in \mathbb{N}, n \geqslant N \Rightarrow ||x_n - a|| \leqslant \alpha$.

On fixe un N convenable.

Alors, d'après (*), $\forall n \in \mathbb{N}, n \ge N \Rightarrow ||f(x_n) - f(a)|| \le \varepsilon$.

On peut donc conclure que $\lim_{n\to+\infty} f(x_n) = f(a)$.

Prouvons que $P2. \Longrightarrow P1..$

Supposons P2. vraie.

Raisonnons par l'absurde en supposant que f non continue en a.

C'est-à-dire $\exists \varepsilon > 0 \ / \ \forall \alpha > 0, \ \exists x \in E \ \text{tel que } ||x-a|| \leq \alpha \ \text{et } ||f(x)-f(a)|| > \varepsilon.$

On fixe un tel ε strictement positif.

Alors, $\forall n \in \mathbb{N}^*$, en prenant $\alpha = \frac{1}{n}$, il existe $x_n \in E$ tel que $||x_n - a|| \leqslant \frac{1}{n}$ et $||f(x_n) - f(a)|| > \varepsilon$. (*) Comme $\forall n \in \mathbb{N}^*$, $||x_n - a|| \leqslant \frac{1}{n}$, la suite $(x_n)_{n \in \mathbb{N}^*}$ ainsi construite converge vers a. Donc, d'après l'hypothèse, la suite $(f(x_n))_{n \in \mathbb{N}^*}$ converge vers f(a).

Donc $\exists N \in \mathbb{N}^*$ tel que $\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow ||f(x_n) - f(a)|| \leqslant \frac{\varepsilon}{2}$.

Ainsi, on obtient une contradiction avec (*).

2. Soit $x \in E$.

Puisque la partie A est dense dans E, il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A telle que $\lim_{n\to\infty} x_n = x$.

On a alors : $\forall n \in \mathbb{N}, f(x_n) = g(x_n)$.

Et en passant à la limite, sachant que f et q sont continues sur E, on obtient f(x) = q(x).

EXERCICE 36 analyse

Énoncé exercice 36

Soient E et F deux espaces vectoriels normés sur le corps \mathbb{R} .

1. Démontrer que si f est une application linéaire de E dans F, alors les propriétés suivantes sont deux à deux équivalentes :

Mise à jour : 11/05/15

- **P1.** f est continue sur E.
- **P2.** f est continue en 0_E .
- **P3.** $\exists k > 0 \text{ tel que} : \forall x \in E, ||f(x)||_F \le k ||x||_{E}$
- 2. Soit E l'espace vectoriel des applications continues de [0;1] dans $\mathbb R$ muni de la norme définie par :

$$\|f\|_{\infty} = \sup_{x \in [0;1]} |f(x)| \text{ . On considère l'application } \varphi \text{ de } E \text{ dans } \mathbb{R} \text{ définie par } : \varphi(f) = \int_0^1 f(t) \mathrm{d}t.$$

Démontrer que φ est linéaire et continue.

Corrigé exercice 36

- 1. P1 \Rightarrow P2 de manière évidente.
 - Prouvons que $P2 \Rightarrow P3$.
- Supposons f continue en 0_E .
- Pour $\varepsilon = 1 > 0$, il existe $\alpha > 0$ tel que $\forall x \in E, ||x 0_E|| \le \alpha \Rightarrow ||f(x) f(0_E)|| \le 1$.
- Soit $x \in E$
- Si $x \neq 0_E$, posons $y = \frac{\alpha}{\|x\|} x$. Puisque $\|y\| = \alpha$, on a $\|f(y)\| \le 1$.
- Donc, par linéarité de f on obtient $||f(x)|| \leq \frac{1}{\alpha} ||x||$.
- Si $x = 0_E$ l'inégalité précédente est encore vérifiée.
- En prenant alors $k = \frac{1}{\alpha}$, on obtient le résultat voulu.
- Prouvons que $P3 \Rightarrow P1$.
- Supposons que $\exists k > 0$ tel que $\forall x \in E, ||f(x)|| \leq k ||x||$.
- Comme f est linéaire, $\forall (x,y) \in E^2$, $||f(y) f(x)|| = ||f(y-x)|| \le k ||y-x||$.
- La fonction f est alors lipschitzienne, donc continue sur E.
- 2. L'application φ est une forme linéaire par linéarité de l'intégrale et continue car :

$$\forall f \in E, |\varphi(f)| = \left| \int_0^1 f(t) \, dt \right| \le \int_0^1 |f(t)| \, dt \le \int_0^1 |f| \, dt = ||f||.$$

EXERCICE 37 analyse

Énoncé exercice 37

On note E l'espace vectoriel des applications continues de [0;1] dans \mathbb{R} .

On pose :
$$\forall f \in E, N_{\infty}(f) = \sup_{x \in [0,1]} |f(x)| \text{ et } N_1(f) = \int_0^1 |f(t)| dt.$$

- 1. (a) Démontrer que N_{∞} et N_1 sont deux normes sur E.
- (b) Démontrer qu'il existe k > 0 tel que, pour tout f de E, $N_1(f) \le kN_\infty(f)$.
- (c) Démontrer que tout ouvert pour la norme N_1 est un ouvert pour la norme N_{∞} .
- 2. Démontrer que les normes N_1 et N_{∞} ne sont pas équivalentes.

Corrigé exercice 37

- 1. (a) Prouvons que N_{∞} est une norme sur E.
 - $\forall f \in E, |f|$ est positive et continue sur le segment [0,1] donc f est bornée et donc $N_{\infty}(f)$ existe et est positive.
 - i) Soit $f \in E$ telle que $N_{\infty}(f) = 0$.

Alors,
$$\forall t \in [0, 1], |f(t)| = 0, \text{ donc } f = 0.$$

- ii) Soit $\lambda \in \mathbb{R}$. Soit $f \in E$.
- Si $\lambda = 0$ alors $N_{\infty}(\lambda f) = 0 = |\lambda| N_{\infty}(f)$.
- Si $\lambda \neq 0$:
- $\forall t \in [0,1], |\lambda f(t)| = |\lambda||f(t)| \leq |\lambda|N_{\infty}(f).$

Donc
$$N_{\infty}(\lambda f) \leqslant |\lambda| N_{\infty}(f)$$
. (1)

$$\forall t \in [0,1], |f(t)| = \frac{1}{|\lambda|} |\lambda f(t)| \leqslant \frac{1}{|\lambda|} N_{\infty}(\lambda f).$$

Donc
$$N_{\infty}(f) \leqslant \frac{1}{|\lambda|} N_{\infty}(\lambda f)$$
.

C'est-à-dire,
$$|\lambda| N_{\infty}(f) \leq N_{\infty}(\lambda f)$$
. (2)

Donc, d'après (1) et (2),
$$N_{\infty}(\lambda f) = |\lambda| N_{\infty}(f)$$
.

iii) Soit
$$(f, g) \in E^2$$

$$\forall t \in [0,1], |(f+g)(t)| \leq |f(t)| + |g(t)| \leq N_{\infty}(f) + N_{\infty}(g).$$

Donc
$$N_{\infty}(f+g) \leq N_{\infty}(f) + N_{\infty}(g)$$
.

On en déduit que N_{∞} est une norme.

Prouvons que N_1 est une norme sur E.

 $\forall f \in E, |f|$ est continue et positive sur [0,1] donc $N_1(f)$ existe et est positive.

- i) Soit $f \in E$ telle que $N_1(f) = 0$.
- Or |f| est continue et positive sur [0,1], donc |f| est nulle.

C'est-à-dire f = 0.

ii) Soit $\lambda \in \mathbb{R}$. Soit $f \in E$.

$$N_1(\lambda f) = \int_0^1 |\lambda f(t)| dt = |\lambda| \int_0^1 |f(t)| dt = |\lambda| N_1(f).$$

iii) Soit $(f, q) \in E^2$.

 $\forall t \in [0,1], |(f+g)(t)| \leq |f(t)| + |g(t)|.$ Donc, par linéarité de l'intégrale, $N_1(f+g) \leq N_1(f) + N_1(g).$

On en déduit que N_1 est une norme sur E.

- (b) k = 1 convient car, $\forall f \in E$, $\int_0^1 |f(t)| dt \leq \int_0^1 N_\infty(f) dt = N_\infty(f)$.
- (c) L'application identité de E, muni de la norme N_{∞} , vers E, muni de la norme N_1 , est continue car linéaire et vérifiant $\forall f \in E$, $N_1(f) \leq kN_{\infty}(f)$.

L'image réciproque d'un ouvert par une application continue étant un ouvert, on en déduit que : un ouvert pour la norme N_1 est un ouvert pour la norme N_{∞} .

On peut aussi raisonner de façon plus élémentaire par inclusion de boules et retour à la définition d'un ouvert.

2. Pour $f_n(t) = t^n$, on a $N_1(f_n) = \frac{1}{n+1}$ et $N_{\infty}(f_n) = 1$, donc $\lim_{n \to +\infty} \frac{N_{\infty}(f_n)}{N_1(f_n)} = +\infty$. Donc ces deux normes ne sont donc pas équivalentes.

EXERCICE 38 analyse

Énoncé exercice 38

Mise à jour : 11/05/15

Page 55

On note $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels.

On pose :
$$\forall P \in \mathbb{R}[X], N_1(P) = \sum_{i=0}^n |a_i|$$
 et $N_{\infty}(P) = \max_{0 \le i \le n} |a_i|$ où $P = \sum_{i=0}^n a_i X^i$ avec $n \geqslant \deg P$.

- 1. (a) Démontrer que N_1 et N_{∞} sont des normes sur $\mathbb{R}[X]$.
- (b) Démontrer que tout ouvert pour la norme N_{∞} est un ouvert pour la norme N_1 .
- (c) Démontrer que les normes N_1 et N_{∞} ne sont pas équivalentes.
- 2. On note $\mathbb{R}_k[X]$ le sous-espace vectoriel de $\mathbb{R}[X]$ constitué par les polynômes de degré inférieur ou égal à k. On note N'_1 la restriction de N_1 à $\mathbb{R}_k[X]$ et N'_{∞} la restriction de N_{∞} à $\mathbb{R}_k[X]$. Les normes N_1' et N_{∞}' sont-elles équivalentes?

Corrigé exercice 38

1. (a) On pose $E = \mathbb{R}[X]$.

Par définition, $\forall P \in E, N_1(P) \ge 0 \text{ et } N_\infty(P) \ge 0.$

Prouvons que N_1 est une norme sur E.

i) Soit
$$P = \sum_{i=0}^{n} a_i X^i \in E$$
 tel que $N_1(P) = 0$.

$$N_1(P) = \sum_{i=0}^n |a_i| = 0 \text{ et, } \forall i \in [\![0,n]\!], \, |a_i| \geqslant 0, \, \text{donc, } \forall i \in [\![0,n]\!], \, |a_i| = 0, \, \text{c'est-\`a-dire } P = 0.$$

ii) Soit
$$P = \sum a_i X^i \in E$$
. Soit $\lambda \in \mathbb{R}$.

ii) Soit
$$P = \sum_{i=0}^{n} a_i X^i \in E$$
. Soit $\lambda \in \mathbb{R}$.
$$N_1(\lambda P) = \sum_{i=0}^{n} |\lambda a_i| = |\lambda| \sum_{i=0}^{n} |a_i| = |\lambda| N_1(P).$$

iii) Soit
$$(P, Q) \in E$$

On considère un entier n tel que $n \geqslant \max(\deg P, \deg Q)$

Alors,
$$P = \sum_{i=0}^{n} a_i X^i$$
 et $Q = \sum_{i=0}^{n} b_i X^i$.

Ainsi,
$$P + Q = \sum_{i=0}^{n} (a_i + b_i) X^i$$
.

Or,
$$\forall i \in [0, n], |a_i^{i=0} + b_i| \leq |a_i| + |b_i|.$$

$$\begin{array}{ll}
\text{Or, } \forall i \in [0, n], \ |a_i + b_i| \leqslant |a_i| + |b_i|. \\
\text{Donc, } N_1(P + Q) = \sum_{i=0}^{n} |a_i + b_i| \leqslant \sum_{i=0}^{n} |a_i| + \sum_{i=0}^{n} |b_i| = N_1(P) + N_1(Q).
\end{array}$$

On en déduit que N_1 est une norme sur E

Montrons que N_{∞} est une norme sur E.

i) Soit
$$P = \sum_{i=0}^n a_i X^i \in E$$
 tel que $N_\infty(P) = 0$.
C'est-à-dire $\max_{0 \le i \le n} |a_i| = 0$, donc, $\forall \, i \in \llbracket 0, n \rrbracket, \, |a_i| = 0$.

On en déduit que P = 0.

ii) Soit
$$P = \sum a_i X^i \in E$$
 et $\lambda \in \mathbb{R}$.

ii) Soit
$$P = \sum_{i=0}^{n} a_i X^i \in E \text{ et } \lambda \in \mathbb{R}.$$

$$N_{\infty}(\lambda P) = \max_{0 \le i \le n} |\lambda| |a_i| = |\lambda| N_{\infty}(P).$$

On considère un entier n tel que $n \ge \max(\deg P, \deg Q)$

Alors,
$$P = \sum_{i=0}^{n} a_i X^i$$
 et $Q = \sum_{i=0}^{n} b_i X^i$.

$$\begin{split} & \text{Ainsi, } P+Q = \sum_{i=0}^n (a_i+b_i)X^i \text{ et } N_\infty(P+Q) = \max_{0\leqslant i\leqslant n} |a_i+b_i|.\\ & \text{Or, } \forall\, i\in [\![0,n]\!], |a_i+b_i|\leqslant |a_i|+|b_i|\leqslant N_\infty(P)+N_\infty(Q).\\ & \text{Donc, } N_\infty(P+Q)\leqslant N_\infty(P)+N_\infty(Q). \end{split}$$

On en déduit que N_{∞} est une norme.

(b) L'application identité de $\mathbb{R}[X]$, muni de la norme N_1 , vers $\mathbb{R}[X]$, muni de la norme N_{∞} , est continue car linéaire et vérifiant, $\forall P \in \mathbb{R}[X], N_{\infty}(P) \leq N_1(P)$. L'image réciproque d'un ouvert par une application continue étant un ouvert, on en déduit qu'un ouvert pour la norme N_{∞} est un ouvert pour la norme N_1 . On peut aussi raisonner, de façon plus élémentaire, par inclusion de boules et retour à la définition d'un

Mise à jour : 11/05/15

- (c) Pour $P_n = 1 + X + X^2 + \cdots + X^n$ on a $N_1(P_n) = n + 1$ et $N_{\infty}(P_n) = 1$. Donc $\lim_{n \to +\infty} \frac{N_1(P_n)}{N_{\infty}(P_n)} = +\infty.$ On en déduit que les normes N_1 et N_{∞} ne sont pas équivalentes.
- 2. En dimension finie, toutes les normes sont équivalentes, en particulier N_1' et N_{∞}' .

EXERCICE 39 analyse

Énoncé exercice 39

On note l^2 l'ensemble des suites $x=(x_n)_{n\in\mathbb{N}}$ de nombres réels telles que la série $\sum x_n^2$ converge

1. Démontrer que pour $x=(x_n)_{n\in\mathbb{N}}\in l^2$ et $y=(y_n)_{n\in\mathbb{N}}\in l^2$, la série $\sum x_ny_n$ converge

On pose alors
$$(x|y) = \sum_{n=0}^{+\infty} x_n y_n$$
.

- 2. (a) Démontrer que l^2 est un sous-espace vectoriel de l'espace vectoriel des suites de nombres réels.
- (b) Démontrer que (|) est un produit scalaire dans l^2 .
- 3. On suppose que l^2 est muni de ce produit scalaire et de la norme associée.

Soit $p \in \mathbb{N}$. Pour tout $x = (x_n) \in l^2$, on pose $\varphi(x) = x_p$.

Démontrer que φ est une application linéaire et continue de l^2 dans \mathbb{R} .

4. On considère l'ensemble F des suites réelles presque nulles (c'est-à-dire l'ensemble des suites réelles dont tous les termes sont nuls sauf peut-être un nombre fini de termes). Déterminer F^{\perp} (au sens de (|)).

Comparer F et $(F^{\perp})^{\perp}$.

Corrigé exercice 39

1. Soit $(x,y) \in (l^2)^2$ avec $x = (x_n)_{n \in \mathbb{N}}$ et $y = (y_n)_{n \in \mathbb{N}}$

 $\forall n \in \mathbb{N}, |x_n y_n| \leqslant \frac{1}{2} \left(x_n^2 + y_n^2 \right).$

- Or $\sum x_n^2$ et $\sum y_n^2$ convergent donc, par critère de majoration des séries à termes positifs, $\sum x_n y_n$ converge absolument, donc converge.
- (a) La suite nulle appartient à l².

Soit $(x,y) \in (l^2)^2$ avec $x = (x_n)_{n \in \mathbb{N}}$ et $y = (y_n)_{n \in \mathbb{N}}$. Soit $\lambda \in \mathbb{R}$.

Montrons que $z = x + y \in l^2$.

On a $z = (z_n)_{n \in \mathbb{N}}$ avec $\forall n \in \mathbb{N}, z_n = x_n + y_n$.

 $\forall n \in \mathbb{N}, \ z_n^2 = (x_n + y_n)^2 = x_n^2 + y_n^2 + 2x_n y_n.$

Or, $\forall (a, b) \in \mathbb{R}^2$, $ab \leq \frac{1}{2} (a^2 + b^2)$. Donc, $\forall n \in \mathbb{N}, z_n^2 \leqslant 2x_n^2 + 2y_n^2$.

Or $\sum x_n^2$ et $\sum y_n^2$ convergent donc, par critère de majoration des séries à termes positifs, $\sum z_n^2$ converge.

Donc $z \in l^2$.

Montrons que $t = \lambda x \in l^2$.

 $t = (t_n)_{n \in \mathbb{N}}$ où $\forall n \in \mathbb{N}, t_n = \lambda x_n$.

 $\begin{array}{l} \forall\,n\in\mathbb{N},\,t_n^2=\lambda^2x_n^2.\\ \text{Or }\sum x_n^2\text{ converge donc }\sum t_n^2\text{ converge.} \end{array}$

Donc $t \in l^2$.

On en déduit que ℓ^2 est un sous-espace vectoriel de l'ensemble des suites réelles.

(b) Montrons que (|) est linéaire par rapport à sa première variable.

Soit $(x,y,z) \in (l^2)^3$ avec $x = (x_n)_{n \in \mathbb{N}}$, $y = (y_n)_{n \in \mathbb{N}}$ et $z = (z_n)_{n \in \mathbb{N}}$. D'après les questions 1. et 2.(a), les sommes des séries intervenant ci-dessous existent bien et :

$$(x+\lambda y|z) = \sum_{n=0}^{+\infty} (x_n + \lambda y_n) z_n = \sum_{n=0}^{+\infty} x_n z_n + \lambda \sum_{n=0}^{+\infty} y_n z_n = (x|z) + \lambda(y|z).$$
 Donc, (|) est linéaire par rapport à sa première variable. (1)

Montrons que (|) est symétrique.

Soit $(x, y) \in (l^2)^2$ avec $x = (x_n)_{n \in \mathbb{N}}, y = (y_n)_{n \in \mathbb{N}}$. On a $(x|y) = \sum_{n=0}^{+\infty} x_n y_n = \sum_{n=0}^{+\infty} y_n x_n = (y|x).$ Donc (|) est symétrique. (2)

Soit
$$x \in l^2$$
 avec $x = (x_n)_{n \in \mathbb{N}}$.

$$(x|x) = \sum_{n=0}^{+\infty} x_n^2 \geqslant 0 \text{ car } \forall n \in \mathbb{N}, x_n^2 \geqslant 0.$$

Donc (|) est positive. (**)

Donc (
$$|$$
) est positive. (**

Soit
$$x \in l^2$$
 avec $x = (x_n)_{n \in \mathbb{N}}$ telle que $(x|x) = 0$.

Alors
$$\sum_{n=0}^{+\infty} x_n^2 = 0.$$

Or,
$$\forall n \in \mathbb{N}, x_n^2 \geq 0$$
.

Donc,
$$\forall n \in \mathbb{N}, x_n = 0$$
, c'est-à-dire $x = 0$.

D'après (*), (**) et (***), (|) est un produit scalaire sur
$$l^2$$
.

3. Soit
$$(x,y) \in l^2$$
 où $x = (x_n)_{n \in \mathbb{N}}$ et $y = (y_n)_{n \in \mathbb{N}}$. Soit $\lambda \in \mathbb{R}$.

On pose
$$z = x + \lambda y$$
 avec $z = (z_n)_{n \in \mathbb{N}}$.

On a
$$\forall n \in \mathbb{N}, z_n = x_n + \lambda y_n$$
.

Ainsi,
$$\varphi(x + \lambda y) = \varphi(z) = z_p = x_p + \lambda y_p = \varphi(x) + \lambda \varphi(y)$$
. Donc φ est linéaire sur l^2 . (*)

$$\forall x = (x_n) \in l^2, |x_p|^2 \leqslant \sum_{n=0}^{+\infty} x_n^2, \text{ donc } |x_p| \leqslant ||x||.$$

Donc
$$\forall x = (x_n)_{n \in \mathbb{N}} \in l^2, |\varphi(x)| = |x_p| \leq ||x|| \quad (**)$$

D'après (*) et (**),
$$\varphi$$
 est continue sur l^2 .

4. Analyse:

Soit
$$x = (x_n)_{n \in \mathbb{N}} \in F^{\perp}$$
.

Alors
$$\forall y \in F$$
, $(x|y) = 0$.

Soit
$$p \in \mathbb{N}$$

On considère la suite $y=(y_n)_{n\in\mathbb{N}}$ de F définie par :

$$\forall n \in \mathbb{N}, y_n = \begin{cases} 1 & \text{si } n = p \\ 0 & \text{sinon} \end{cases}$$

$$y \in F$$
, donc $(x|y) = 0$, donc $x_p = 0$.

On en déduit que,
$$\forall p \in \mathbb{N}, x_p = 0$$
.

C'est-à-dire x = 0.

la suite nulle appartient bien à F^{\perp} .

Conclusion : $F^{\perp} = \{0\}$.

Ainsi,
$$(F^{\perp})^{\perp} = l^2$$
.

On constate alors que $F \neq (F^{\perp})^{\perp}$.

EXERCICE 40 analyse

Énoncé exercice 40

Mise à jour : 11/05/15

Soit A une algèbre de dimension finie admettant e pour élément unité et munie d'une norme notée $|| \cdot ||$. On suppose que : $\forall (u, v) \in A^2$, $||u.v|| \leq ||u||.||v||$.

- 1. Soit u un élément de A tel que ||u|| < 1.
- (a) Démontrer que la série $\sum u^n$ est convergente.
- (b) Démontrer que (e-u) est inversible et que $(e-u)^{-1} = \sum_{n=0}^{+\infty} u^n$.
- 2. Démontrer que, pour tout $u \in A$, la série $\sum \frac{u^n}{n!}$ converge.

Corrigé exercice 40

1. (a) Soit u un élément de A tel que ||u|| < 1.

D'après les hypothèses, on a $||u^2|| \leq ||u||^2$

On en déduit, par récurrence, que $\forall n \in \mathbb{N}, ||u^n|| \leq ||u||^n$.

Puisque ||u|| < 1, la série numérique $\sum ||u||^n$ est convergente et, par comparaison des séries à termes positifs, on peut affirmer que la série vectorielle $\sum u^n$ est absolument convergente.

Puisque l'algèbre A est de dimension finie, la série $\sum u^n$ converge.

(b) Pour tout
$$N \in \mathbb{N}$$
, on a $(e-u) \sum_{n=0}^{N} u^n = e - u^{N+1}$ avec $||u^{N+1}|| \le ||u||^{N+1} \to 0$.

Donc, en passant à la limite,
$$(e-u)\sum_{n=0}^{+\infty}u^n=e$$
.

De même,
$$\left(\sum_{n=0}^{+\infty} u^n\right) (e-u) = e$$
.

Et donc,
$$e - u$$
 est inversible avec $(e - u)^{-1} = \sum_{n=0}^{+\infty} u^n$.

2. On a
$$\left\|\frac{u^n}{n!}\right\| \leqslant \frac{\|u\|^n}{n!}$$
. De plus, la série exponentielle $\sum \frac{\|u\|^n}{n!}$ converge.

Donc, par comparaison des séries à termes positifs, la série vectorielle $\sum_{n=1}^{\infty} \frac{u^n}{n!}$ est absolument convergente et donc convergente, car A est de dimension finie.

CC BY-NC-SA 3.0 FR Page 59 CC BY-NC-SA 3.0 FR Page 60

EXERCICE 41 analyse

Énoncé exercice 41

Énoncer quatre théorèmes différents ou méthodes permettant de prouver qu'une partie d'un espace vectoriel normé est fermée et, pour chacun d'eux, donner un exemple concret d'utilisation dans \mathbb{R}^2 .

Mise à jour : 11/05/15

Les théorèmes utilisés pourront être énoncés oralement à travers les exemples choisis.

Remarques:

- 1. On utilisera au moins une fois des suites.
- 2. On pourra utiliser au plus une fois le passage au complémentaire
- 3. Ne pas utiliser le fait que R² et l'ensemble vide sont des parties ouvertes et fermées.

Corrigé exercice 41

1. L'image réciproque d'un fermé par une application continue est un fermé.

Exemple:
$$A = \{(x,y) \in \mathbb{R}^2 / xy = 1\}$$
 est un fermé de \mathbb{R}^2 car c'est l'image réciproque du fermé $\{1\}$ de \mathbb{R} par l'application continue $f: \begin{bmatrix} \mathbb{R}^2 & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto xy \end{bmatrix}$.

2. Soit E un espace vectoriel normé. Soit $F \subset E$.

F est un fermé de E si et seulement si $\mathcal{C}_E F$ est un ouvert de E.

Exemple:
$$B = \{(x,y) \in \mathbb{R}^2 \ / \ x^2 + y^2 \ge 1\}$$
 est un fermé de \mathbb{R}^2 car $\mathbb{C}_{\mathbb{R}^2} B$ est un ouvert de \mathbb{R}^2 . En effet, $\mathbb{C}_{\mathbb{R}^2} B = \{(x,y) \in \mathbb{R}^2 \ / \ x^2 + y^2 < 1\} = B_o(0,1)$ où $B_o(0,1)$ désigne la boule ouverte de centre 0 et de rayon 1 pour la norme euclidienne sur \mathbb{R}^2 .

Puis, comme toute boule ouverte est un ouvert, on en déduit que $\mathcal{C}_{\mathbb{R}^2}B$ est un ouvert.

3. Caractérisation séquentielle des fermés :

Soit A une partie d'un espace vectoriel normé E.

A est un fermé de E si et seulement si, pour toute suite (x_n) à valeurs dans A telle que $\lim_{n \to +\infty} x_n = x$, alors $x \in A$.

Exemple:
$$C = \{(x,y) \in \mathbb{R}^2 \mid xy \geqslant 1\}$$
 est un fermé.
En effet, soit $((x_n,y_n))_{n \in \mathbb{N}}$ une suite de points de C qui converge vers (x,y) . $\forall n \in \mathbb{N}$, $x_ny_n \geqslant 1$, donc, par passage à la limite, $xy \geqslant 1$ donc $(x,y) \in C$.

4. Une intersection de fermés d'un espace vectoriel normé E est un fermé de E.

Exemple:
$$D = \{(x,y) \in \mathbb{R}^2 \mid xy \ge 1 \text{ et } x \ge 0\}$$
. On pose $D_1 = \{(x,y) \in \mathbb{R}^2 \mid xy \ge 1\}$ et $D_2 = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0\}$. D'après 3., D_1 est un fermé. D_2 est également un fermé.

En effet, D_2 est l'image réciproque du fermé $[0, +\infty[$ de $\mathbb R$ par l'application continue $f: \begin{bmatrix} \mathbb R^2 & \longrightarrow \mathbb R \\ (x,y) & \longmapsto x \end{bmatrix}$. On en déduit que $D=D_1\cap D_2$ est un fermé de E.

Remarque

On peut aussi utiliser le fait qu'un produit de compacts est un compact et qu'un ensemble compact est fermé. Exemple : $E = [0;1] \times [2;5]$ est un fermé de \mathbb{R}^2 .

En effet, comme [0;1] et [2;5] sont fermés dans \mathbb{R} et bornés, ce sont donc des compacts de \mathbb{R} .

On en déduit que E est un compact de \mathbb{R}^2 donc un fermé de \mathbb{R}^2 .

EXERCICE 42 analyse

Énoncé exercice 42

On considère les deux équations différentielles suivantes :

$$2xy' - 3y = 0 (H)$$
$$2xy' - 3y = \sqrt{x} (E)$$

- 1. Résoudre l'équation (H) sur l'intervalle $]0, +\infty[$.
- 2. Résoudre l'équation (E) sur l'intervalle $]0, +\infty[$, puis sur l'intervalle $[0, +\infty[$.

Corrigé exercice 42

- 1. On trouve comme solution de l'équation homogène sur $]0, +\infty[$ la droite vectorielle engendrée par $x \longmapsto x^{\frac{3}{2}}$. En effet, une primitive de $x \longmapsto \frac{3}{2x}$ sur $]0, +\infty[$ est $x \longmapsto \frac{3}{2} \ln x$.
- 2. On utilise la méthode de variation de la constante en cherchant une fonction k telle que $x \mapsto k(x)x^{\frac{3}{2}}$ soit une solution de l'équation complète (E) sur $]0, +\infty[$.

On arrive alors à
$$2k'(x)x^{\frac{5}{2}} = \sqrt{x}$$
 et on choisit $k(x) = -\frac{1}{2x}$

Les solutions de (E) sur $]0,+\infty[$ sont donc les fonctions $x\longmapsto kx^{\frac{3}{2}}-\frac{1}{2}\sqrt{x}$ avec $k\in\mathbb{R}$.

Si on cherche à prolonger les solutions de (E) sur $[0, +\infty[$, alors le prolongement par continuité ne pose pas de problème en posant f(0) = 0.

Par contre, aucun prolongement ne sera dérivable en 0 car
$$\frac{f(x) - f(0)}{x - 0} = k\sqrt{x} - \frac{1}{2}\frac{1}{\sqrt{x}} \xrightarrow[x \to 0]{} -\infty$$
.

Conclusion : l'ensemble des solutions de l'équation différentielle $2xy' - 3y = \sqrt{x}$ sur $[0, +\infty[$ est l'ensemble vide.

EXERCICE 43 analyse

Enoncé exercice 43

Soit $x_0 \in \mathbb{R}$.

On définit la suite (u_n) par $u_0 = x_0$ et, $\forall n \in \mathbb{N}$, $u_{n+1} = \operatorname{Arctan}(u_n)$.

1. (a) Démontrer que la suite (u_n) est monotone et déterminer, en fonction de la valeur de x_0 , le sens de variation de (u_n) .

Mise à jour : 11/05/15

- (b) Montrer que (u_n) converge et déterminer sa limite.
- 2. Déterminer l'ensemble des fonctions h, continues sur \mathbb{R} , telles que : $\forall x \in \mathbb{R}$, $h(x) = h(\operatorname{Arctan} x)$.

Corrigé exercice 43

On pose $f(x) = \operatorname{Arctan} x$.

1. (a) Premier cas : Si $u_1 < u_0$

Puisque la fonction $f: x \mapsto \operatorname{Arctan} x$ est strictement croissante sur \mathbb{R} alors $\operatorname{Arctan}(u_1) < \operatorname{Arctan}(u_0)$

Par récurrence, on prouve que $\forall n \in \mathbb{N}$, $u_{n+1} < u_n$. Donc la suite (u_n) est strictement décroissante.

Deuxième cas : Si $u_1 > u_0$

Par un raisonnement similaire, on prouve que la suite (u_n) est strictement croissante.

Troisième cas : Si $u_1 = u_0$

La suite (u_n) est constante.

Pour connaître les variations de la suite (u_n) , il faut donc déterminer le signe de $u_1 - u_0$, c'est-à-dire le signe de $Arctan(u_0) - u_0$.

On pose alors $g(x) = \operatorname{Arctan} x - x$ et on étudie le signe de la fonction g.

On a $\forall x \in \mathbb{R}$, $g'(x) = \frac{-x^2}{1+x^2}$ et donc $\forall x \in \mathbb{R}^*$, g'(x) < 0.

Donc g est strictement décroissante sur \mathbb{R} et comme g(0) = 0 alors :

 $\forall x \in]0, +\infty[, q(x) < 0 \text{ et } \forall x \in]-\infty, 0[, q(x) > 0.$

On a donc trois cas suivant le signe de x_0 :

- Si $x_0 > 0$, la suite (u_n) est strictement décroissante.
- Si $x_0 = 0$, la suite (u_n) est constante.
- Si x₀ < 0, la suite(u_n) est strictement croissante.
- (b) La fonction g étant strictement décroissante et continue sur \mathbb{R} , elle induit une bijection de \mathbb{R} sur

0 admet donc un unique antécédent par q et, comme q(0) = 0, alors 0 est le seul point fixe de f.

Donc si la suite (u_n) converge, elle converge vers 0, le seul point fixe de f.

Premier cas : Si $u_0 > 0$

L'intervalle $]0, +\infty[$ étant stable par f, on a par récurrence, $\forall n \in \mathbb{N}, u_n > 0$. Donc la suite (u_n) est

décroissante et minorée par 0, donc elle converge et ce vers 0, unique point fixe de f.

Deuxième cas : Si $u_0 < 0$

Par un raisonnement similaire, on prouve que (u_n) est croissante et majorée par 0, donc elle converge vers 0.

Troisième cas : Si $u_0 = 0$

La suite (u_n) est constante.

Conclusion : $\forall u_0 \in \mathbb{R}$, (u_n) converge vers 0.

2. Soit h une fonction continue sur \mathbb{R} telle que, $\forall x \in \mathbb{R}$, $h(x) = h(\operatorname{Arctan} x)$. Soit $x \in \mathbb{R}$.

Considérons la suite (u_n) définie par $u_0 = x$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \operatorname{Arctan}(u_n)$.

On a alors $h(x) = h(u_0) = h(Arctan(u_0)) = h(u_1) = h(Arctan(u_1)) = h(u_2) = \dots$

Par récurrence, on prouve que, $\forall n \in \mathbb{N}, h(x) = h(u_n)$.

De plus $\lim h(u_n) = h(0)$ par convergence de la suite (u_n) vers 0 et par continuité de h.

On obtient ainsi : h(x) = h(0) et donc h est une fonction constante.

Réciproquement, toutes les fonctions constantes conviennent. Conclusion : Seules les fonctions constantes répondent au problème.

CC BY-NC-SA $3.0~\mathrm{FR}$ Page 63 CC BY-NC-SA 3.0 FR Page 64

EXERCICE 44 analyse

Énoncé exercice 44

Soit E un espace vectoriel normé. Soient A et B deux parties non vides de E.

- 1. (a) Rappeler la caractérisation de l'adhérence d'un ensemble à l'aide des suites.
- (b) Montrer que : $A \subset B \Longrightarrow \overline{A} \subset \overline{B}$.
- 2. Montrer que : $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Remarque : une réponse sans utiliser les suites est aussi acceptée.

- 3. (a) Montrer que : $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
- (b) Montrer, à l'aide d'un exemple, que l'autre inclusion n'est pas forcément vérifiée (on pourra prendre $E=\mathbb{R}$).

Mise à jour : 11/05/15

Corrigé exercice 44

Soit E un espace vectoriel normé. On note A et B deux parties non vides de E.

- 1. (a) $x \in \overline{A}$ si et seulement si il existe une suite à valeurs dans A qui converge vers x.
- (b) On suppose $A \subset B$. Prouvons que $\overline{A} \subset \overline{B}$.

Soit $x \in \overline{A}$.

Il existe une suite $(u_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N},\ u_n\in A$ et $\lim_{n\to+\infty}u_n=x$.

Or
$$A \subset B$$
, donc, $\forall n \in \mathbb{N}, u_n \in B$ et $\lim_{n \to +\infty} u_n = x$.

Donc $x \in \overline{B}$.

2. D'après la question précédente,

 $A \subset A \cup B$, donc $\overline{A} \subset \overline{A \cup B}$.

 $B \subset A \cup B$, donc $\overline{B} \subset \overline{A \cup B}$.

Donc $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

Prouvons que $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

Soit $x \in \overline{A \cup B}$.

Il existe une suite $(u_n)_{n\in\mathbb{N}}$ telle que, $\forall n\in\mathbb{N},\, u_n\in A\cup B$ et $\lim_{n\to\infty}u_n=x.$

On considère les ensembles $A_1 = \{n \in \mathbb{N} \text{ tels que } u_n \in A\}$ et $A_2 = \{n \in \mathbb{N} \text{ tels que } u_n \in B\}$.

Comme $\forall n \in \mathbb{N}, u_n \in A \cup B, A_1 \text{ ou } A_2 \text{ est de cardinal infini.}$

On peut donc extraire de $(u_n)_{n\in\mathbb{N}}$ une sous-suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ à valeurs dans A ou une sous-suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ à valeurs dans B telle que $\lim_{n\to+\infty} u_{\varphi(n)} = x$.

Donc $x \in \overline{A} \cup \overline{B}$.

Remarque :On peut aussi prouver que $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$ sans utiliser les suites :

 \overline{A} et \overline{B} sont fermés, donc $\overline{A} \cup \overline{B}$ est un fermé contenant $A \cup B$. Or $\overline{A \cup B}$ est le plus petit fermé contenant $A \cup B$, donc $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

3. (a) D'après la question 1.

 $A \cap B \subset A$, donc $\overline{A \cap B} \subset \overline{A}$.

 $A \cap B \subset B$, donc $\overline{A \cap B} \subset \overline{B}$.

Donc $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

Autre méthode :

Comme $A \subset \overline{A}$ et $B \subset \overline{B}$ alors $A \cap B \subset \overline{A} \cap \overline{B}$.

Comme $\overline{A} \cap \overline{B}$ est un fermé contenant $A \cap B$, alors par minimalité de $\overline{A} \cap \overline{B}$, on a $\overline{A} \cap \overline{B} \subset \overline{A} \cap \overline{B}$.

(b) A =]0, 1[et B =]1, 2[. $\overline{A \cap B} = \emptyset$ et $\overline{A} \cap \overline{B} = \{1\}$.

EXERCICE 45 analyse

Énoncé Exercice 45

Les questions 1. et 2. sont indépendantes.

Soit E un espace vectoriel normé. Soit A une partie non vide de E.

On note \overline{A} l'adhérence de A.

- 1. (a) Donner la caractérisation séquentielle de \overline{A} .
- (b) Prouver que, si A est convexe, alors \overline{A} est convexe.
- 2. On pose : $\forall x \in E$, $d_A(x) = \inf_{a \in A} ||x a||$.
- (a) Soit $x \in E$. Prouver que $d_A(x) = 0 \Longrightarrow x \in \overline{A}$.
- (b) On suppose que A est fermée et que : $\forall (x,y) \in E^2, \forall t \in [0,1], d_A(tx+(1-t)y) \leq td_A(x)+(1-t)d_A(y)$. Prouver que A est convexe.

Corrigé Exercice 45

- 1. (a) Soit A une partie d'un ensemble E. $x \in \overline{A} \iff$ il existe une suite $(x_n)_{n \in \mathbb{N}}$ à valeurs dans A telle que $\lim_{n \to +\infty} x_n = x$.
- (b) On suppose que \overline{A} est une partie non vide et convexe de E. Prouvons que \overline{A} est convexe.

Soit $(x, y) \in (\overline{A})^2$. Soit $t \in [0, 1]$.

Prouvons que $z = tx + (1 - t)y \in \overline{A}$.

 $x \in \overline{A}$ donc, il existe une suite $(x_n)_{n \in \mathbb{N}}$ à valeurs dans A telle que $\lim_{n \to +\infty} x_n = x$.

 $y \in \overline{A}$ donc, il existe une suite $(y_n)_{n \in \mathbb{N}}$ à valeurs dans A telle que $\lim_{n \to +\infty} y_n = y$.

On pose : $\forall n \in \mathbb{N}, z_n = tx_n + (1-t)y_n$.

 $\forall n \in \mathbb{N}, \ x_n \in A, y_n \in A \text{ et } A \text{ est convexe, donc } z_n \in A. \text{ De plus } \lim_{n \to +\infty} z_n = z.$

Donc z est limite d'une suite à valeurs dans A, c'est-à-dire $z \in \overline{A}$.

2. (a) Soit A une partie non vide de E. Soit $x \in E$ tel que $d_A(x) = 0$.

Par définition de la borne inférieure, nous avons : $\forall \epsilon > 0, \exists a \in A \text{ tel que } ||x - a|| < \epsilon.$

Donc, $\forall n \in \mathbb{N}^*$, pour $\epsilon = \frac{1}{n}$, il existe $a_n \in A$ tel que $||x - a_n|| < \frac{1}{n}$.

Alors la suite $(a_n)_{n\in\mathbb{N}^*}$ ainsi construite est à valeurs dans A et converge vers x, donc $x\in\overline{A}$.

(b) On suppose que A est fermée et que, $\forall (x,y) \in E^2$, $\forall t \in [0,1]$, $d_A(tx+(1-t)y) \leq td_A(x)+(1-t)d_A(y)$. Soit $(x,y) \in (A)^2$. Soit $t \in [0,1]$.

Prouvons que $z = tx + (1 - t)y \in A$.

Par hypothèse, on a $d_A(z) \leq t d_A(x) + (1-t) d_A(y)$. (1)

Or $x \in A$ et $y \in A$, donc $\underline{d}_A(x) = d_A(y) = 0$ et donc, d'après (1), $d_A(z) = 0$.

Alors, d'après 2.(a), $z \in \overline{A}$. Or A est fermée, donc $\overline{A} = A$ et donc $z \in A$.

EXERCICE 46 analyse

Énoncé exercice 46

On considère la série : $\sum \cos \left(\pi \sqrt{n^2 + n + 1}\right)$

- 1. Prouver que, au voisinage de $+\infty$, $\pi\sqrt{n^2+n+1}=n\pi+\frac{\pi}{2}+\alpha\frac{\pi}{n}+O\left(\frac{1}{n^2}\right)$ où α est un réel que l'on
- 2. En déduire que $\sum_{n\geq 1} \cos\left(\pi\sqrt{n^2+n+1}\right)$ converge.
- 3. $\sum \cos \left(\pi \sqrt{n^2 + n + 1}\right)$ converge-t-elle absolument?

Corrigé exercice 46

1.
$$\pi\sqrt{n^2+n+1} = n\pi\sqrt{1+\frac{1}{n}+\frac{1}{n^2}}$$
.
Or, au voisinage de $+\infty$, $\sqrt{1+\frac{1}{n}+\frac{1}{n^2}} = 1+\frac{1}{2}(\frac{1}{n}+\frac{1}{n^2}) - \frac{1}{8n^2} + O(\frac{1}{n^3}) = 1+\frac{1}{2n}+\frac{3}{8n^2} + O(\frac{1}{n^3})$.
Donc, au voisinage de $+\infty$, $\pi\sqrt{n^2+n+1} = n\pi + \frac{\pi}{2} + \frac{3}{9} + O(\frac{1}{n^2})$.

2. On pose $\forall n \in \mathbb{N}^*, v_n = \cos\left(\pi\sqrt{n^2 + n + 1}\right)$

Diaprès 1.,
$$v_n = \cos\left(n\pi + \frac{\pi}{n} + 1\right)$$
.

D'après 1., $v_n = \cos\left(n\pi + \frac{\pi}{2} + \frac{3}{8}\frac{\pi}{n} + O(\frac{1}{n^2})\right) = (-1)^{n+1}\sin\left(\frac{3}{8}\frac{\pi}{n} + O(\frac{1}{n^2})\right)$.

Donc $v_n = \frac{3\pi}{8}\frac{(-1)^{n+1}}{n} + O(\frac{1}{n^2})$.

Donc
$$v_n = \frac{3\pi}{8} \frac{(-1)^{n+1}}{n} + O(\frac{1}{n^2})$$

Or
$$\sum_{n\geqslant 1} \frac{(-1)^{n+1}}{n}$$
 converge (d'après le critère spécial des séries alternées) et $\sum_{n\geqslant 1} O(\frac{1}{n^2})$ converge (par critère

de domination), donc
$$\sum_{n\geqslant 1} v_n$$
 converge.

- 3. D'après le développement asymptotique du 2., on a $|v_n| \sim \frac{3\pi}{8n}$
- Or $\sum_{n\geq 1} \frac{1}{n}$ diverge (série harmonique), donc $\sum_{n\geq 1} |v_n|$ diverge, c'est-à-dire $\sum_{n\geq 1} v_n$ ne converge pas absolument.

EXERCICE 47 analyse

Énoncé exercice 47

- 1. Soit f une fonction continue sur [0,1] à valeurs dans \mathbb{R} .
- (a) Soit $n \in \mathbb{N}^*$. Quelle est l'interprétation géométrique de la somme de Riemann $R_n(f) = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)$?
- (b) Démontrer, lorsque f est de classe \mathcal{C}^1 sur [0,1], que $\lim_{n \to +\infty} R_n(f) = \int_0^1 f(x) dx$.
- 2. Déterminer la limite de la suite (x_n) définie par $x_n = \sum_{n=0}^{\infty} \frac{n}{3n^2 + k^2}$

Corrigé exercice 47

1. (a) $R_n(f)$ est exactement la somme des aires des rectangles $\left[\frac{k-1}{n}, \frac{k}{n}\right] \times [0, f\left(\frac{k}{n}\right)]$ lorsque k décrit $\{1,...,n\}$ et c'est aussi l'intégrale de la fonction ϕ en escalier définie sur [0,1]

$$\phi\left(1\right) = f\left(1\right)$$
 et $\forall k \in \{1, \dots, n\}$ $\forall x \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$ $\phi\left(x\right) = f\left(\frac{k}{n}\right)$.

Quand n augmente dans \mathbb{N}^* , cette aire approche de mieux en mieux l'aire sous le graphe de f d'où l'idée que $\lim_{n \to +\infty} R_n(f) = \int_{-\infty}^{\infty} f(x) dx$.

(b) On remarque d'abord que $\frac{1}{n}f\left(\frac{k}{n}\right) = \int_{\frac{k-1}{n}}^{\frac{k}{n}}f\left(\frac{k}{n}\right) dx$ et ensuite la relation de Chasles donne :

$$\forall n \in \mathbb{N}^*, R_n(f) - \int_0^1 f(x) \, \mathrm{d}x = \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f\left(\frac{k}{n}\right) \, \mathrm{d}x - \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) \, \mathrm{d}x = \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left\{ f\left(\frac{k}{n}\right) - f(x) \right\} \, \mathrm{d}x$$

Puis:

$$\forall n \in \mathbb{N}^*, \quad \left| R_n(f) - \int_0^1 f(x) \, \mathrm{d}x \right| \leq \sum_{k=1}^n \left| \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(f\left(\frac{k}{n}\right) - f(x) \right) \, \mathrm{d}x \right| \leq \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| f\left(\frac{k}{n}\right) - f(x) \right| \, \mathrm{d}x \quad (1)$$

f est de classe C^1 sur [0,1], donc f' est continue sur le compact [0,1].

Donc f' est bornée sur [0,1]. Posons $M=\sup |f'(t)|$.

Alors, d'après l'inégalité des accroissements finis,
$$\forall k \in \{1, \dots, n\}, \, \forall x \in \left[\frac{k-1}{n}, \frac{k}{n}\right], \, \left|f\left(\frac{k}{n}\right) - f\left(x\right)\right| \leqslant M \, \left|\frac{k}{n} - x\right| \leqslant M \frac{1}{n}.$$

Donc
$$\forall k \in \{1, \dots, n\}, \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left| f\left(\frac{k}{n}\right) - f\left(x\right) \right| dx \leqslant \frac{M}{n^2}.$$

$$\forall n \in \mathbb{N}^*, \quad \left| R_n(f) - \int_0^1 f(x) \, \mathrm{d}x \right| \leqslant \frac{M}{n}. \quad (2)$$

Or $\lim_{n \to +\infty} \frac{1}{n} = 0$ donc, d'après (2), on a bien démontré que $\lim_{n \to +\infty} R_n(f) = \int_0^1 f(x) dx$.

2.
$$x_n = \sum_{k=1}^n \frac{n}{3n^2 + k^2} = \frac{1}{n} \sum_{k=1}^n \frac{1}{3 + (\frac{k}{n})^2} = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$
 où $f(x) = \frac{1}{3 + x^2}$.

D'après 1.(b), on a $\lim_{n \to +\infty} x_n = \int_0^1 \frac{dx}{3+x^2} = \frac{1}{3} \int_0^1 \frac{dx}{1+\left(\frac{x}{\sqrt{2}}\right)^2} = \frac{1}{\sqrt{3}} \operatorname{Arctan}\left(\frac{1}{\sqrt{3}}\right)$. Donc $\lim_{n \to +\infty} x_n = \frac{1}{\sqrt{2}} \frac{\pi}{6} = \frac{\pi}{6\sqrt{2}}$.

EXERCICE 48 analyse

Énoncé exercice 48

Mise à jour : 11/05/15

 $C^0([0,1],\mathbb{R})$ désigne l'espace vectoriel des fonctions continues sur [0,1] à valeurs dans \mathbb{R} . Soit $f \in C^0([0,1], \mathbb{R})$ telle que : $\forall n \in \mathbb{N}, \int_0^1 t^n f(t) dt = 0$.

- 1. Énoncer le théorème de Weierstrass d'approximation par des fonctions polynomiales.
- 2. Soit (P_n) une suite de fonctions polynomiales convergeant uniformément sur le segment [0,1] vers f.
- (a) Montrer que la suite de fonctions $(P_n f)$ converge uniformément sur le segment [0,1] vers f^2 .

(b) Démontrer que
$$\int_0^1 f^2(t) dt = \lim_{n \to +\infty} \int_0^1 P_n(t)f(t)dt$$
.

- (c) Calculer $\int_{0}^{1} P_{n}(t) f(t) dt$.
- 3. En déduire que f est la fonction nulle sur le segment [0,1]

Corrigé exercice 48

- 1. Toute fonction f continue sur un segment [a,b] et à valeurs réelles ou complexes est limite uniforme sur ce segment d'une suite de fonctions polynomiales.
- 2. On pose : $\forall f \in C^0([0,1], \mathbb{R}), N_{\infty}(f) = \sup_{t \in [0,1]} |f(t)|.$
- (a) f et P_n étant continues sur [0,1], $\forall t \in [0,1], |P_n(t)f(t) - f^2(t)| = |f(t)||P_n(t) - f(t)| \le N_\infty(f)N_\infty(P_n - f).$ On en déduit que $N_{\infty}(P_n f - f^2) \leq N_{\infty}(f) N_{\infty}(P_n - f)$ (1) Or (P_n) converge uniformément vers f sur [0,1] donc $\lim_{n \to \infty} N_{\infty}(P_n - f) = 0$. Donc, d'après (1), $\lim_{n\to+\infty} N_{\infty}(P_n f - f^2) = 0.$

Donc $(P_n f)$ converge uniformément sur [0, 1] vers f^2 .

(b) D'après la question précédente, $(P_n f)$ converge uniformément sur le segment [0,1] vers f^2 . De plus, $\forall n \in \mathbb{N}$, $P_n f$ est continue sur [0,1]. Donc, d'après le théorème d'intégration d'une limite uniforme de fonctions continues, $\lim_{n\to+\infty}\int_0^1 P_n(t)f(t)\mathrm{d}t = \int_0^1 \lim_{n\to+\infty} (P_n(t)f(t))\mathrm{d}t = \int_0^1 f^2(t) \ \mathrm{d}t.$

$$\lim_{n \to +\infty} \int_0^1 P_n(t) f(t) dt = \int_0^1 \lim_{n \to +\infty} (P_n(t) f(t)) dt = \int_0^1 f^2(t) dt.$$
(c) Par linéarité de l'intégrale, on a

- $\int_0^1 P_n(t)f(t)dt = \int_0^1 \left(\sum_{k=0}^{d_n} a_{n,k} t^k\right) f(t)dt = \int_0^1 \left(\sum_{k=0}^{d_n} a_{n,k} t^k f(t)\right) dt = \sum_{k=0}^{d_n} a_{n,k} \int_0^1 t^k f(t)dt.$ Or, par hypothèse, $\forall k \in \mathbb{N}$, $\int_{0}^{1} t^{k} f(t) dt = 0$, donc $\int_{0}^{1} P_{n}(t) f(t) dt = 0$.
- 3. D'après les questions 2.(b) et 2.(c), on a $\int_{-1}^{1} f^2(t) dt = 0$. Or f^2 est positive et continue sur [0,1], donc f^2 est nulle sur [0,1] et donc f est nulle sur [0,1].

CC BY-NC-SA 3.0 FR Page 69 CC BY-NC-SA 3.0 FR Page 70

EXERCICE 49 analyse

Énoncé exercice 49

Soit $\sum a_n$ une série absolument convergente à termes complexes. On pose $M=\sum_{n=1}^{+\infty}|a_n|$

- 1. Énoncer le théorème d'intégration terme à terme sur un intervalle I quelconque pour une série de fonctions $\sum f_n$.
- 2. On pose : $\forall n \in \mathbb{N}, \ \forall t \in [0, +\infty[, \ f_n(t) = \frac{a_n t^n}{\cdot} e^{-t}]$.
- (a) Justifier que la suite (a_n) est bornée.
- (b) Justifier que la série de fonctions $\sum f_n$ converge simplement sur $[0, +\infty[$.
- (c) Prouver que $f: t \mapsto \sum_{n=0}^{+\infty} f_n(t)$ est continue sur $[0, +\infty[$.
- 3. (a) Justifier que, pour tout $n \in \mathbb{N}$, la fonction $q_n : t \mapsto t^n e^{-t}$ est intégrable sur $[0, +\infty[$ et calculer $\int_{0}^{+\infty} g_n(t) dt$.

En déduire la convergence et la valeur de $\int_{-\infty}^{+\infty} |f_n(t)| dt$.

(b) Prouver que
$$\int_0^{+\infty} \left(\sum_{n=0}^{+\infty} \frac{a_n t^n}{n!} e^{-t} \right) dt = \sum_{n=0}^{+\infty} a_n.$$

Corrigé exercice 49

- 1. K désigne le corps des réels ou celui des complexes.
- Soit I un intervalle quelconque de \mathbb{R} et $\sum f_n$ une série de fonctions de I dans \mathbb{K} .
- On suppose que :
- i) $\forall n \in \mathbb{N}, f_n$ est continue par morceaux et intégrable sur I.
- ii) $\sum f_n$ converge simplement sur I. On note $f = \sum_{n=1}^{\infty} f_n$.
- iii) f est continue par morceaux sur I.
- iv) $\sum \int_{\Gamma} |f_n|$ converge.

Alors f est intégrable sur I et on a $\int_{I} \left(\sum_{n=1}^{+\infty} f_{n}\right) dt = \sum_{n=1}^{+\infty} \int_{I} f_{n}(t) dt$.

- 2. Rappelons que, $\forall x \in \mathbb{R}, \sum \frac{x^n}{n!}$ converge $(\sum_{n=1}^{+\infty} \frac{x^n}{n!} = e^x)$.
- (a) $\sum a_n$ converge absolument, donc converge simplement; donc la suite (a_n) converge vers 0 et donc elle
 - Autre méthode : On remarque que $\forall n \in \mathbb{N} \ |a_n| \leqslant M = \sum_{n=0}^{\infty} |a_n|$.
- (b) Soit $t \in [0, +\infty[$.
 - On a : $\forall n \in \mathbb{N}, |f_n(t)| \leq M \frac{t^n}{n!}$. Or la série $\sum \frac{t^n}{n!}$ converge, donc $\sum f_n(t)$ converge absolument, donc
 - On a donc vérifié la convergence simple de $\sum f_n$ sur $[0, +\infty[$
- (c) Soit $x \in [0, +\infty[$. $\forall n \in \mathbb{N}, \forall t \in [0, x], |f_n(t)| \leq M \frac{x^n}{n!}$ et $\sum \frac{x^n}{n!}$ converge.

On en déduit que, $\forall x \in [0, +\infty[$, $\sum f_n$ converge normalement, donc uniformément sur [0, x].

On a donc, $\forall n \in \mathbb{N}$, f_n est continue sur $[0, +\infty[$ et la série de fonctions $\sum f_n$ converge uniformément sur sur tout segment [0,x] (avec x>0) inclus dans $[0,+\infty[$

On en déduit, d'après le théorème de continuité de la somme d'une série de fonctions, que f est continue sur $[0, +\infty[$.

- 3. (a) $\forall n \in \mathbb{N}, g_n \text{ est continue sur } [0, +\infty[$.
 - De plus, $\lim_{t\to +\infty} t^2 g_n(t) = 0$, donc, au voisinage de $+\infty$, $g_n(t) = o\left(\frac{1}{t^2}\right)$

Or $t \mapsto \frac{1}{42}$ est intégrable sur $[1, +\infty[$, donc g_n est intégrable sur $[1, +\infty[$, donc sur $[0, +\infty[$.

On pose alors: $\forall n \in \mathbb{N}, I_n = \int_{-\infty}^{+\infty} g_n(t) dt$.

En effectuant une intégration par parties, on prouve que $I_n = nI_{n-1}$. On en déduit par récurrence que $I_n = n!I_0 = n!$.

Alors $t \mapsto |f_n(t)|$ est intégrable sur $[0, +\infty[$ car $|f_n(t)| = \frac{|a_n|}{r}g_n(t)$.

Et on a
$$\int_0^{+\infty} |f_n(t)| dt = \frac{|a_n|}{n!} n! = |a_n|.$$

- (b) i) $\forall n \in \mathbb{N}, f_n$ est continue par morceaux et intégrable sur $[0, +\infty[$ d'après la question 3.(a)
 - ii) $\sum f_n$ converge simplement sur $[0, +\infty[$ et a pour somme $f = \sum_{i=1}^{n} f_n$ d'après 2.(b)
 - iii) f est continue par morceaux sur $[0, +\infty[$ car continue sur $[0, +\infty[$ d'après la question 2.(c)
 - iv) $\sum \int_0^{+\infty} |f_n(t)| \, \mathrm{d}t = \sum |a_n|$ et $\sum |a_n|$ converge par hypothèse, donc $\sum \int_0^{+\infty} |f_n(t)| \, \mathrm{d}t$ converge. Alors, d'après le théorème d'intégration terme à terme pour les séries de fonctions, f est intégrable sur

$$\int_0^{+\infty} \left(\sum_{n=0}^{+\infty} \frac{a_n \, t^n}{n!} \, e^{-t} \right) \mathrm{d}t = \sum_{n=0}^{+\infty} \int_0^{+\infty} \frac{a_n \, t^n}{n!} \, e^{-t} \mathrm{d}t = \sum_{n=0}^{+\infty} \frac{a_n}{n!} \int_0^{+\infty} t^n \, e^{-t} \mathrm{d}t = \sum_{n=0}^{+\infty} \frac{a_n}{n!} \, n! = \sum_{n=0}^{+\infty} a_n.$$

Mise à jour : 11/05/15

EXERCICE 50 analyse

Énoncé exercice 50

On considère la fonction $F: x \mapsto \int_{\hat{r}}^{+\infty} \frac{e^{-2t}}{r \perp t} dt$.

- 1. Prouver que F est définie et continue sur $]0; +\infty[$
- 2. Prouver que $x \mapsto xF(x)$ admet une limite en $+\infty$ et déterminer la valeur de cette limite.
- 3. Déterminer un équivalent, au voisinage de $+\infty$, de F(x).

Corrigé exercice 50

1. Notons
$$f: \left\{ \begin{array}{ccc}]0; +\infty[\times[0;+\infty[& \mapsto & \mathbb{R} \\ (x,t) & \mapsto & \frac{e^{-2t}}{x+t} \end{array} \right.$$

- (a) $\forall x \in]0; +\infty[$, $t \mapsto f(x,t)$ est continue par morceaux sur $[0; +\infty[$
- (b) $\forall t \in [0; +\infty[, x \mapsto f(x, t) = \frac{e^{-2t}}{x + t} \text{ est continue sur }]0; +\infty[.$
- (c) Soit [a, b] un segment de $]0; +\infty[$.

 $\forall x \in [a,b], \ \forall t \in [0;+\infty[,|f(x,t)| \leqslant \frac{1}{e}e^{-2t} \text{ et } \varphi:t\mapsto \frac{1}{e}e^{-2t} \text{ est continue par morceaux, positive et}$

En effet,
$$\lim_{t \to +\infty} t^2 \varphi(t) = 0$$
, donc $\varphi(t) = \int_{t \to +\infty} \left(\frac{1}{t^2}\right)$

Donc φ est intégrable sur $[1, +\infty[$, donc sur $[0; +\infty[$

On en déduit que, d'après le théorème de continuité des intégrales à paramètres,

$$F: x \mapsto \int_0^{+\infty} \frac{e^{-2t}}{x+t} dt$$
 est définie et continue sur $]0; +\infty[$

2.
$$\forall x \in]0; +\infty[, xF(x) = \int_0^{+\infty} \frac{x}{x+t} e^{-2t} dt.$$

Posons $\forall x \in]0; +\infty[, \forall t \in [0; +\infty[, h_x(t) = \frac{x}{x+t} \, \mathrm{e}^{-2\,t}.$ i) $\forall x \in]0; +\infty[, t \longmapsto h_x(t)$ est continue par morceaux sur $[0, +\infty[.$ ii) $\forall t \in [0; +\infty[, \lim_{x \to +\infty} h_x(t) = e^{-2\,t}.$ La fonction $h: t \mapsto e^{-2\,t}$ est continue par morceaux sur $[0; +\infty[.$ iii) $\forall x \in]0; +\infty[, \forall t \in [0; +\infty[, |h_x(t)| \leqslant e^{-2\,t} \, \mathrm{et} \, t \mapsto e^{-2\,t} \, \mathrm{est} \, \mathrm{continue} \, \mathrm{par} \, \mathrm{morceaux}, \mathrm{positive} \, \mathrm{et} \, \mathrm{intégrable}$ sur $[0; +\infty[$.

Donc, d'après l'extension du théorème de convergence dominée à $(h_x)_{x\in[0:+\infty[}$,

$$\lim_{x \to +\infty} \int_0^{+\infty} h_x(t) dt = \int_0^{+\infty} h(t) dt = \int_0^{+\infty} e^{-2t} dt = \frac{1}{2}.$$

3. D'après 2., $\lim_{x \to +\infty} xF(x) = \frac{1}{2}$, donc $F(x) = \frac{1}{2}$.

EXERCICE 51 analyse

Énoncé exercice 51

Mise à jour : 11/05/15

1. Montrer que la série $\sum \frac{(2n)!}{(n!)^2 2^{4n}(2n+1)}$ converge

On se propose de calculer la somme de cette série.

- 2. Donner le développement en série entière en 0 de $t \mapsto \frac{1}{\sqrt{1-t}}$ en précisant le rayon de convergence. Remarque : dans l'expression du développement, on utilisera la notation factorielle
- 3. En déduire le développement en série entière en 0 de $x \mapsto \operatorname{Arcsin} x$ ainsi que son rayon de convergence.
- 4. En déduire la valeur de $\sum_{n=0}^{+\infty} \frac{(2n)!}{(n!)^2 2^{4n} (2n+1)}.$

Corrigé exercice 51

1. On pose : $\forall n \in \mathbb{N}, u_n = \frac{(2n)!}{(n!)^2 2^{4n} (2n+1)}$.

On a:
$$\forall n \in \mathbb{N}, u_n > 0$$
.
 $\forall n \in \mathbb{N}, \frac{u_{n+1}}{u_n} = \frac{(2n+2)(2n+1)(2n+1)}{(n+1)^2 2^4 (2n+3)} = \frac{(2n+1)^2}{8(n+1)(2n+3)} \underset{+ \infty}{\sim} \frac{1}{4}$.
Ainsi, $\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} \frac{1}{4} < 1$.

Ainsi,
$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{1} \frac{1}{4} < 1$$

Donc, d'après la règle de d'Alembert, $\sum u_n$ converge.

2. D'après le cours, $\forall \alpha \in \mathbb{R}, u \mapsto (1+u)^{\alpha}$ est développable en série entière en 0 et le rayon de convergence R de son développement en série entière vaut 1 si $\alpha \notin \mathbb{N}$.

De plus,
$$\forall u \in]-1,1[, (1+u)^{\alpha}=1+\sum_{n=1}^{+\infty}\frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}u^{n}.$$

En particulier, pour $\alpha = -\frac{1}{2}$ et u = -t:

$$R = 1 \text{ et } \forall t \in]-1, 1[, \frac{1}{\sqrt{1-t}} = 1 + \sum_{n=1}^{+\infty} \frac{(-1)(-3)\cdots\left(-(2n-1)\right)}{2^n n!} (-t)^n.$$

En multipliant numérateur et dénominateur par $2.4...2n = 2^n n!$, on obtient :

$$\forall t \in]-1,1[, \frac{1}{\sqrt{1-t}} = 1 + \sum_{n=1}^{+\infty} \frac{(2n)!}{(2^n n!)^2} t^n$$

Conclusion:
$$R = 1$$
 et $\forall t \in]-1,1[,\frac{1}{\sqrt{1-t}} = \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2} t^n.$

3. D'après la question précédente, en remarquant que : $x \in]-1,1[\Leftrightarrow t=x^2 \in [0,1[$ et $[0,1[\subset]-1,1[$, il vient :

$$\forall x \in]-1,1[, \frac{1}{\sqrt{1-x^2}} = \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2} x^{2n}$$
 avec un rayon de convergence $R=1$.

Arcsin est dérivable sur] -1,1[avec Arcsin' : $x \longmapsto \frac{1}{\sqrt{1-x^2}}$

D'après le cours sur les séries entières, on peut intégrer terme à terme le développement en série entière de $x\mapsto \frac{1}{\sqrt{1-x^2}}$ et le rayon de convergence est conservé.

$$\forall x \in]-1,1[, \text{ Arcsin } x = \underbrace{\operatorname{Arcsin 0}}_{n=0} + \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2 (2n+1)} \, x^{2n+1} \text{ avec un rayon de convergence } R = 1.$$

4. Prenons $x = \frac{1}{2} \in]-1,1[$ dans le développement précédent.

On en déduit que Arcsin
$$\left(\frac{1}{2}\right) = \sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n}(n!)^2(2n+1)} \frac{1}{2^{2n+1}}$$

Page 74

C'est-à-dire, en remarquant que Arcsin $\left(\frac{1}{2}\right) = \frac{\pi}{6}$, on obtient $\sum_{0}^{+\infty} \frac{(2n)!}{(n!)^2 2^{4n} (2n+1)} = \frac{\pi}{3}$.

EXERCICE 52 analyse

Énoncé exercice 52

Soit $\alpha \in \mathbb{R}$.

Soit $\alpha \in \mathbb{R}$. On considère l'application définie sur \mathbb{R}^2 par $f(x,y) = \begin{cases} \frac{y^4}{x^2 + y^2 - xy} & \text{si } (x,y) \neq (0,0) \\ \alpha & \text{si } (x,y) = (0,0). \end{cases}$

- 1. Prouver que : $\forall (x,y) \in \mathbb{R}^2, \ x^2 + y^2 xy \ge \frac{1}{2}(x^2 + y^2).$
- 2. (a) Quel est le domaine de définition de f?
- (b) Déterminer α pour que f soit continue sur \mathbb{R}^2 .
- 3. Dans cette question, on suppose que $\alpha = 0$.
- (a) Justifier l'existence de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et les calculer.
- (b) Justifier l'existence de $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$ et donner leur valeur.
- (c) f est-elle de classe C^1 sur \mathbb{R}^2 ?

Corrigé exercice 52

1. Soit
$$(x,y) \in \mathbb{R}^2$$
. $x^2 + y^2 - xy - \frac{1}{2}(x^2 + y^2) = \frac{1}{2}(x^2 + y^2 - 2xy) = \frac{1}{2}(x - y)^2 \ge 0$.
Donc $x^2 + y^2 - xy \ge \frac{1}{2}(x^2 + y^2)$.

2. (a) Soit $(x,y) \in \mathbb{R}^2$. D'après 1., $x^2 + y^2 - xy = 0 \Longleftrightarrow x^2 + y^2 = 0 \Longleftrightarrow x = y = 0$. Ainsi, f est définie sur \mathbb{R}^2 .

(b) D'après les théorèmes généraux, f est continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$

D'après 1., pour $(x,y) \neq (0,0), \ 0 \leqslant f(x,y) \leqslant \frac{2y^4}{x^2 + y^2} \leqslant \frac{2(x^2 + y^2)^2}{x^2 + y^2}$

Ainsi, $0 \le f(x,y) \le 2(x^2 + y^2) \xrightarrow[(x,y)\to(0,0)]{} 0$.

Or: f est continue en $(0,0) \iff f(x,y) \xrightarrow[(x,y)\to(0,0)]{} f(0,0) = \alpha$.

Donc: f est continue en $(0,0) \iff \alpha = 0$.

Conclusion : f est continue sur $\mathbb{R}^2 \iff \alpha = 0$.

3. (a) D'après les théorèmes généraux, f est de classe \mathcal{C}^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$. $\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \frac{\partial f}{\partial x}(x,y) = \frac{-y^4(2x-y)}{(x^2+y^2-xy)^2}$ et $\frac{\partial f}{\partial y}(x,y) = \frac{2y^5-3xy^4+4x^2y^3}{(x^2+y^2-xy)^2}$

(b) Pour tout $x \neq 0$, $\frac{f(x,0) - f(0,0)}{x - 0} = 0 \xrightarrow[x \to 0]{} 0$, donc $\frac{\partial f}{\partial x}(0,0)$ existe et $\frac{\partial f}{\partial x}(0,0) = 0$.

Pour tout $y \neq 0$, $\frac{f(0,y) - f(0,0)}{y - 0} = y \underset{y \to 0}{\longrightarrow} 0$, donc $\frac{\partial f}{\partial y}(0,0)$ existe et $\frac{\partial f}{\partial u}(0,0) = 0$.

(c) Pour montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^2 , montrons que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial u}$ sont continues sur \mathbb{R}^2 .

Pour cela, il suffit de montrer qu'elles sont continues en (0,0).

 $\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \text{ on note } r = \sqrt{x^2 + y^2}. \text{ On a alors } |x| \leq r \text{ et } |y| \leq r.$

De plus, $(x, y) \to (0, 0) \iff r \to 0$.

D'après 1. et l'inégalité triangulair

$$\begin{split} \left|\frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial x}(0,0)\right| &\leqslant 4 \, \frac{\left|y^4(2x-y)\right|}{(x^2+y^2)^2} \leqslant 4 \, \frac{r^4(2r+r)}{r^4} = 12r \underset{r \to 0}{\longrightarrow} 0 = \frac{\partial f}{\partial x}(0,0). \\ \left|\frac{\partial f}{\partial y}(x,y) - \frac{\partial f}{\partial y}(0,0)\right| &\leqslant 4 \, \frac{\left|2y^5 - 3xy^4 + 4x^2y^3\right|}{(x^2+y^2)^2} \leqslant 4 \, \frac{2r^5 + 3r^5 + 4r^5}{r^4} = 36r \underset{r \to 0}{\longrightarrow} 0 = \frac{\partial f}{\partial y}(0,0). \end{split}$$

Mise à jour : 11/05/15

Donc $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont continues en (0,0) et par suite sur \mathbb{R}^2 . Ainsi, f est de classe \mathcal{C}^1 sur \mathbb{R}^2 .

EXERCICE 53 analyse

Énoncé exercice 53

Mise à jour : 11/05/15

Page 77

On considère, pour tout entier naturel n non nul, la fonction f_n définie sur \mathbb{R} par $f_n(x) = \frac{x}{1 + n^4 x^4}$

1. (a) Prouver que
$$\sum_{n\geqslant 1} f_n$$
 converge simplement sur \mathbb{R} .

On pose alors :
$$\forall x \in \mathbb{R}, f(x) = \sum_{n=1}^{+\infty} f_n(x).$$

(b) Soit
$$(a, b) \in \mathbb{R}^2$$
 avec $0 < a < b$.

$$\sum_{n \geq 1} f_n \text{ converge-t-elle normalement sur } [a, b] ? \text{ sur } [a, +\infty[?]] ?$$

(c)
$$\sum_{n\geqslant 1} f_n$$
 converge-t-elle normalement sur $[0,+\infty[$?

- 2. Prouver que f est continue sur \mathbb{R}^* .
- 3. Déterminer $\lim_{x \to +\infty} f(x)$.

Corrigé exercice 53

1. (a) Soit
$$x \in \mathbb{R}$$
.

Si
$$x = 0$$
, alors $f_n(0) = 0$ et donc $\sum_{n \ge 1} f_n(0)$ converge.

Si
$$x \neq 0$$
, $f_n(x) \underset{+\infty}{\sim} \frac{1}{n^4 x^3}$.

Or $\sum_{n=1}^{\infty} \frac{1}{n^4}$ est une série de Riemann convergente donc, par critère d'équivalence pour les séries à termes

de signe constant,
$$\sum_{n\geqslant 1} f_n(x)$$
 converge.

Conclusion: $\sum_{n \geq 1} f_n$ converge simplement sur \mathbb{R} .

- (b) Soit $(a, b) \in \mathbb{R}^2$ tel que 0 < a < b.
 - Prouvons que $\sum_{n\geqslant 1} f_n$ converge normalement sur [a,b].

 $\forall x \in [a,b], |f_n(x)| \leqslant \frac{b}{n^4 a^4}$ (majoration indépendante de x).

De plus, $\sum_{n=1}^{\infty} \frac{1}{n^4}$ converge (série de Riemann convergente).

Donc $\sum f_n$ converge normalement sur [a, b].

• Prouvons que $\sum_{n\geqslant 1} f_n$ converge normalement sur $[a,+\infty[$.

 $\forall x \in [a, +\infty[, |f_n(x)| \leqslant \frac{x}{n^4 x^4} = \frac{1}{n^4 x^3} \leqslant \frac{1}{n^4 a^3} \quad \text{(majoration indépendante de x)}.$ De plus, $\sum_{n \ge 1} \frac{1}{n^4}$ converge (série de Riemann convergente).

Donc $\sum f_n$ converge normalement sur $[a, +\infty[$.

(c) On remarque que f_n est continue sur le compact [0,1], donc f_n est bornée sur [0,1]. De plus, d'après 1.(b), $\forall x \in [1,+\infty[,|f_n(x)| \leq \frac{1}{n^4}, \text{ donc } f_n \text{ est bornée sur } [1,+\infty[.$

On en déduit que f_n est bornée sur $[0, +\infty[$ et que $\sup_{x\in [0, +\infty[} |f_n(x)|$ existe.

$$\forall n \in \mathbb{N}^*, \sup_{x \in [0, +\infty[} |f_n(x)| \geqslant f_n(\frac{1}{n}) = \frac{1}{2n}.$$
 Or $\sum_{i=1}^{n} \frac{1}{n}$ diverge (série harmonique).

Donc, par critère de minoration des séries à termes positifs, $\sum_{n \geq 1} \sup_{x \in [0,+\infty[} |f_n(x)| \text{ diverge.}$

Donc
$$\sum_{n\geqslant 1} f_n$$
 ne converge pas normalement sur $[0,+\infty[$.

Autre méthode :

$$\forall n \in \mathbb{N}^*, f_n \text{ est dérivable sur }]0, +\infty[\text{ et } \forall x \in]0, +\infty[, f'_n(x) = \frac{1 - 3n^4x^4}{(1 + n^4x^4)^2}]$$

On en déduit que f_n est croissante sur $\left[0, \frac{1}{3^{\frac{1}{4}}n}\right]$ et décroissante sur $\left[\frac{1}{3^{\frac{1}{4}}n}, +\infty\right[$. f_n étant positive sur \mathbb{R} , on en déduit que f_n est bornée.

$$\text{Donc } \sup_{x \in [0, +\infty[} |f_n(x)| \text{ existe et } \sup_{x \in [0, +\infty[} |f_n(x)| = f_n(\frac{1}{3^{\frac{1}{4}}n}) = \frac{1}{4 \times 3^{\frac{1}{4}n}}$$

In examt positive sur
$$\mathbb{R}$$
, on en deduit que f_n est bornee.

Donc $\sup_{x \in [0, +\infty[} |f_n(x)| \text{ existe et } \sup_{x \in [0, +\infty[} |f_n(x)| = f_n(\frac{1}{3^{\frac{1}{4}}n}) = \frac{1}{4 \times 3^{\frac{1}{4}}n}.$

Or $\sum_{n \geqslant 1} \frac{1}{n}$ diverge (série harmonique), donc $\sum_{n \geqslant 1} \sup_{x \in [0, +\infty[} |f_n(x)| \text{ diverge.}$

Donc
$$\sum_{n\geq 1} f_n$$
 ne converge pas normalement sur $[0, +\infty[$.

2.
$$\forall n \in \mathbb{N}^*, f_n \text{ est continue sur }]0, +\infty[. (1)$$

$$\sum_{n\geq 1} f_n \text{ converge normalement, donc uniformément, sur tout segment } [a,b] \text{ inclus dans }]0,+\infty[. \quad (2)]$$

Donc, d'après (1) et (2),
$$f$$
 est continue sur $]0, +\infty[$.

Comme f est impaire, on en déduit que f est également continue sur $]-\infty,0[$.

Conclusion : f est continue sur \mathbb{R}^* .

3.
$$\forall n \in \mathbb{N}^*$$
, $\lim_{x \to +\infty} f_n(x) = 0$ car, au voisinage de $+\infty$, $f_n(x) \sim \frac{1}{n^4 x^3}$

D'après 1.(b), $\sum_{n} f_n$ converge normalement, donc uniformément, sur $[1, +\infty[$.

Donc, d'après le cours, f admet une limite finie en $+\infty$ et

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sum_{n=1}^{+\infty} f_n(x) = \sum_{n=1}^{+\infty} \lim_{x \to +\infty} f_n(x) = 0.$$

Conclusion: $\lim_{x \to a} f(x) = 0$.

EXERCICE 54 analyse

Énoncé Exercice 54

Mise à jour : 11/05/15

Soit E l'ensemble des suites à valeurs réelles qui convergent vers 0.

- 1. Prouver que E est un sous-espace vectoriel de l'espace vectoriel des suites à valeurs réelles.
- 2. On pose : $\forall u = (u_n)_{n \in \mathbb{N}} \in E$, $||u|| = \sup |u_n|$.
- (a) Prouver que ||.|| est une norme sur E
- (b) Prouver que : $\forall u = (u_n)_{n \in \mathbb{N}} \in E, \sum_{n=1}^{\infty} \frac{u_n}{2n+1}$ converge

(c) On pose :
$$\forall u = (u_n)_{n \in \mathbb{N}} \in E, f(u) = \sum_{n=0}^{+\infty} \frac{u_n}{2^{n+1}}$$
. Prouver que f est continue sur E .

Corrigé Exercice 54

1. La suite nulle appartient à E.

Soit
$$(u, v) = ((u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}}) \in E^2$$
. Soit $\alpha \in \mathbb{R}$.
Posons $\forall n \in \mathbb{N}, w_n = u_n + \alpha v_n$. Montrons que $w \in E$.
 $u \in E$ donc $\lim_{n \to +\infty} u_n = 0$ et $v \in E$ donc $\lim_{n \to +\infty} v_n = 0$.

On en déduit que $\lim_{n\to+\infty} w_n = 0$, donc $w \in E$.

On en déduit que E est bien un sous-espace vectoriel de l'espace vectoriel des suites à valeurs réelles.

- 2. (a) $\forall u = (u_n)_{n \in \mathbb{N}} \in E$, ||u|| existe car $\lim_{n \to +\infty} u_n = 0$ donc $(u_n)_{n \in \mathbb{N}}$ converge et donc elle est bornée.
 - ||.|| est à valeurs dans \mathbb{R}^+
 - i) Soit $u = (u_n)_{n \in \mathbb{N}} \in E$ telle que ||u|| = 0.
 - Alors sup $|u_n| = 0$ c'est-à-dire $\forall n \in \mathbb{N}, u_n = 0$.

Donc u = 0.

ii) Soit $u = (u_n)_{n \in \mathbb{N}} \in E$. Soit $\lambda \in \mathbb{R}$.

Si $\lambda = 0$

 $||\lambda u|| = |\lambda|||u|| = 0.$

Si $\lambda \neq 0$

$$\forall n \in \mathbb{N}, |\lambda u_n| = |\lambda||u_n| \le |\lambda|||u_n|| \text{ donc } ||\lambda u|| \le |\lambda|||u||.$$
 (1)

$$\forall n \in \mathbb{N}, |\lambda u_n| = |\lambda||u_n| \leqslant |\lambda|||u_n|| \text{ donc } ||\lambda u|| \leqslant |\lambda|||u||. \quad (1)$$

$$\forall n \in \mathbb{N}, |u_n| = |\frac{1}{\lambda}||\lambda u_n| \leqslant |\frac{1}{\lambda}|.||\lambda u|| \text{ donc } ||\lambda u|| \geqslant |\lambda|.||u||. \quad (2)$$

D'après (1) et (2), $||\lambda u|| = |\hat{\lambda}|||u||$

iii) Soit $(u, v) = ((u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}}) \in E^2$

 $\forall n \in \mathbb{N}, \, |u_n+v_n| \leqslant |u_n|+|v_n| \leqslant ||u||+||v|| \text{ donc } ||u+v|| \leqslant ||u||+||v||$

(b) Soit $u = (u_n)_{n \in \mathbb{N}} \in E$.

$$\forall n \in \mathbb{N}, |u_n| \leq ||u|| \text{ donc } \forall n \in \mathbb{N}, \left| \frac{u_n}{2n+1} \right| \leq \frac{||u||}{2n+1}.$$

Or
$$\sum \frac{1}{2^{n+1}} = \frac{1}{2} \sum \left(\frac{1}{2}\right)^n$$
 converge (série géométrique de raison strictement inférieure à 1 en valeur absolue).

Donc, par critère de majoration pour les séries à termes positifs, $\sum \left|\frac{u_n}{2n+1}\right|$ converge

C'est-à-dire, $\sum \frac{u_n}{2^{n+1}}$ converge absolument, donc converge

De plus,
$$\left|\sum_{n=0}^{+\infty} \frac{u_n}{2^{n+1}}\right| \leqslant \sum_{n=0}^{+\infty} \frac{||u||}{2^{n+1}} = ||u||.$$

De plus, d'après la questions précédente, $\forall u=(u_n)_{n\in\mathbb{N}}\in E,\, |f(u)|\leqslant ||u||$

On en déduit que f est continue sur E.

Mise à jour : 11/05/15

EXERCICE 55 analyse

Énoncé exercice 55

Soit a un nombre complexe.

On note E l'ensemble des suites à valeurs complexes telles que :

 $\forall n \in \mathbb{N}, u_{n+2} = 2au_{n+1} + 4(ia - 1)u_n \text{ avec } (u_0, u_1) \in \mathbb{C}^2.$

- 1. Prouver que E est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes.
 - Déterminer, en le justifiant, la dimension de E.
- 2. Dans cette question, on considère la suite de E définie par : $u_0 = 1$ et $u_1 = 1$. Exprimer, pour tout entier naturel n, le nombre complexe u_n en fonction de n.

Indication : discuter suivant les valeurs de a.

Corrigé exercice 55

 Montrons que E est un sous-espace-vectoriel de l'ensemble des suites à valeurs complexes. La suite nulle appartient à E (obtenue pour $(u_0, u_1) = (0, 0)$).

Soit $u=(u_n)_{n\in\mathbb{N}}$ et $v=(v_n)_{n\in\mathbb{N}}$ deux suites de E. Soit $\lambda\in\mathbb{C}$.

Montrons que $w = u + \lambda v \in E$.

On a $\forall n \in \mathbb{N}, w_n = u_n + \lambda v_n$.

Soit $n \in \mathbb{N}$.

 $w_{n+2} = u_{n+2} + \lambda v_{n+2}$.

Or $(u, v) \in E^2$, donc $w_{n+2} = 2au_{n+1} + 4(ia - 1)u_n + \lambda (2av_{n+1} + 4(ia - 1)v_n)$

c'est-à-dire $w_{n+2} = 2a (u_{n+1} + \lambda v_{n+1}) + 4(ia - 1) (u_n + \lambda v_n)$

ou encore $w_{n+2} = 2aw_{n+1} + 4(ia - 1)w_n$.

Donc $w \in E$.

Donc E est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes.

On considère l'application φ définie par :

$$\varphi: \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & E \\ (b,c) & \longmapsto & u=(u_n)_{n\in\mathbb{N}} \text{ avec } \forall n\in\mathbb{N}, \ u_{n+2}=2au_{n+1}+4(ia-1)u_n \text{ et } (u_0,v_0)=(b,c) \end{array}$$

Par construction, φ est un isomorphisme d'espaces vectoriels, donc E est de dimension finie et $\dim E = \dim \mathbb{R}^2 = 2.$

2. Il s'agit d'une suite récurrente linéaire d'ordre 2 à coefficients constants.

On introduit l'équation caractéristique (E): $r^2 - 2ar - 4(ia - 1) = 0$.

On a deux possibilités :

- si (E) admet deux racines distinctes r_1 et r_2 , alors $\forall n \in \mathbb{N}, u_n = \alpha r_1^n + \beta r_2^n$ avec (α, β) que l'on détermine à partir des conditions initiales.
- si (E) a une unique racine double r, alors $\forall n \in \mathbb{N}, u_n = (\alpha n + \beta)r^n$ avec (α, β) que l'on détermine à partir des conditions initiales.

Le discriminant réduit de (E) est $\Delta' = a^2 + 4ia - 4 = (a+2i)^2$.

Premier cas: a = -2i

r = a = -2i est racine double de (E).

Donc, $\forall n \in \mathbb{N}, u_n = (\alpha n + \beta)(-2i)^n$.

Or $u_0 = 1$ et $u_1 = 1$, donc $1 = \beta$ et $1 = (\alpha + \beta)(-2i)$.

On en déduit que $\alpha = \frac{i}{2} - 1$ et $\beta = 1$.

Deuxième cas : $a \neq -2i$

On a deux racines distinctes $r_1 = 2(a+i)$ et $r_2 = -2i$.

Donc $\forall n \in \mathbb{N}, u_n = \alpha (2(a+i))^n + \beta (-2i)^n$.

Or $u_0 = 1$ et $u_1 = 1$, donc $\alpha + \beta = 1$ et $2(a+i)\alpha - 2i\beta = 1$.

On en déduit, après résolution, que $\alpha = \frac{1+2i}{2a+4i}$ et $\beta = \frac{2a+2i-1}{2a+4i}$

EXERCICE 56 analyse

Énoncé exercice 56

On considère la fonction H définie sur $]1;+\infty[$ par $H(x)=\int^{x^2}\frac{\mathrm{d}t}{\ln t}$

- 1. Montrer que H est C^1 sur $]1; +\infty[$ et calculer sa dérivée
- 2. Montrer que la fonction u définie par $u(x) = \frac{1}{\ln x} \frac{1}{x-1}$ admet une limite finie en x = 1.
- 3. En utilisant la fonction u de la question 2., calculer la limite en 1^+ de la fonction H.

Corrigé exercice 56

1. Soit x_0 un réel de $]1; +\infty[$.

Posons:
$$\forall x \in]1; +\infty[, F(x) = \int_{x_0}^x \frac{\mathrm{d}t}{\ln t}$$

$$t \longmapsto \frac{1}{\ln t}$$
 est continue sur $]1; +\infty[$.

Donc, d'après le théorème fondamental, F est dérivable sur $]1; +\infty[$ et $\forall x \in]1; +\infty[$, $F'(x) = \frac{1}{\ln x}$

De plus,
$$\forall x \in]1; +\infty[$$
, $H(x) = F(x^2) - F(x)$ et $\forall x \in]1; +\infty[$ on a $[x;x^2] \subset]1; +\infty[$. On en déduit que H est dérivable sur $]1; +\infty[$. De plus, $\forall x \in]1; +\infty[$, $H'(x) = 2x \cdot \frac{1}{\ln x^2} - \frac{1}{\ln x} = \frac{x-1}{\ln x}$. On en déduit que H est de classe \mathcal{C}^1 sur $]1; +\infty[$.

2. En posant x = 1 + h, u(x) = v(h) avec $v(h) = \frac{h - \ln(1 + h)}{h \cdot \ln(1 + h)}$. Or au voisinage de 0, $h - \ln(1 + h) = \frac{1}{2}h^2 + o(h^2)$ donc $h - \ln(1 + h) \sim \frac{1}{6}h^2$.

Et
$$h \ln(1+h) \sim h^2$$
 donc $v(h) \sim \frac{1}{2}$.

Donc $\lim_{x \to 1} u(x) = \lim_{h \to 0} v(h) = \frac{1}{2}$.

3. En utilisant u, on a $H(x) = \int_{0}^{x^2} u(t)dt + \int_{0}^{x^2} \frac{dt}{t-1} = \int_{0}^{x^2} u(t)dt + \ln(x+1)$. (1)

 $\forall x \in]1; +\infty[$, u est continue sur l'intervalle $[x, x^2]$. u est continue sur $]1; +\infty[$ et admet une limite finie en 1, donc u est prolongeable par continuité en 1.

Notons u_1 ce prolongement continu sur $[1; +\infty[$

Alors,
$$\forall x \in]1; +\infty[, \int_{x}^{x^{2}} u(t)dt = \int_{x}^{x^{2}} u_{1}(t)dt.$$
 (2)

On pose alors
$$\forall x \in [1; +\infty[, U_1(x) = \int_x^{x^-} u_1(t) dt]$$

Pour les mêmes raisons que dans la question 1., U_1 est dérivable, donc continue, sur $[1, +\infty[$.

Donc $\lim_{x\to 1} U_1(x) = U_1(1) = 0.$

Donc, d'après (2),
$$\lim_{x\to 1} \int_{x}^{x^2} u(t) dt = \lim_{x\to 1} U_1(x) = 0.$$

On en déduit, d'après (1), que $\lim_{x \to 0} H(x) = \ln 2$.

Mise à jour : 11/05/15

EXERCICE 57 analyse

Énoncé exercice 57

- Soit f une fonction de R² dans R.
- (a) Donner, en utilisant des quantificateurs, la définition de la continuité de f en (0,0).
- (b) Donner la définition de «f différentiable en (0,0)».
- 2. On considère l'application définie sur \mathbb{R}^2 par $f(x,y) = \begin{cases} xy\frac{x^2 y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$
- (a) Montrer que f est continue sur R².
- (b) Montrer que f est de classe C¹ sur ℝ².

Corrigé exercice 57

- 1. (a) f est continue en $(0,0) \iff \forall \varepsilon > 0, \exists \alpha > 0 / \forall (x,y) \in \mathbb{R}^2, ||(x,y)|| < \alpha \implies |f(x,y) f(0,0)| < \varepsilon$. · \parallel désigne une norme quelconque sur \mathbb{R}^2 puisque toutes les normes sont équivalentes sur \mathbb{R}^2 (espace de dimension finie)
- (b) f est différentiable en $(0,0) \iff \exists L \in \mathcal{L}_{\mathcal{C}}(\mathbb{R}^2,\mathbb{R})$ au voisinage de (0,0), f(x,y) = f(0,0) + L(x,y) + o(||(x,y)||).

Remarque: Comme \mathbb{R}^2 est de dimension finie, si $L \in \mathcal{L}(\mathbb{R}^2, \mathbb{R})$ alors $L \in \mathcal{L}_{\mathcal{C}}(\mathbb{R}^2, \mathbb{R})$.

On notera ||.|| la norme euclidienne usuelle sur ℝ²

On remarque que $\forall (x, y) \in \mathbb{R}^2, |x| \le ||(x, y)|| \text{ et } |y| \le ||(x, y)||$ (*).

(a) $(x,y) \mapsto x^2 + y^2$ et $(x,y) \mapsto xy(x^2 - y^2)$ sont continues sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et $(x,y) \mapsto x^2 + y^2$ ne s'annule pas sur $\mathbb{R}^2\setminus\{(0,0)\}\$ donc, f est continue sur $\mathbb{R}^2\setminus\{(0,0)\}$.

On a, en utilisant (*) et l'inégalité triangulaire, $|f(x,y)-f(0,0)|=\left|xy\frac{x^2-y^2}{x^2+y^2}\right|\leqslant |x|\cdot|y|\leqslant \|(x,y)\|^2$. Donc f est continue en (0,0).

(b) f est de classe \mathcal{C}^1 sur \mathbb{R}^2 si et seulement si $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial x}$ existent sur \mathbb{R}^2 et sont continues sur \mathbb{R}^2 .

$$f \text{ admet des dérivées partielles sur } \mathbb{R}^2 \backslash \{(0,0)\} \text{ et elles sont continues sur } \mathbb{R}^2 \backslash \{(0,0)\}.$$
 De plus, $\forall (x,y) \in \mathbb{R}^2 - \{(0,0)\}, \ \frac{\partial f}{\partial x}(x,y) = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \text{ et } \frac{\partial f}{\partial y}(x,y) = \frac{x^5 - 4x^3y^2 - xy^4}{(x^2 + y^2)^2}.$ (**)

Existence des dérivées partielles en
$$(0,0)$$
: $\forall x \in \mathbb{R}^*, \frac{f(x,0)-f(0,0)}{x-0} = 0$, donc $\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x-0} = 0$; donc $\frac{\partial f}{\partial x}(0,0)$ existe et $\frac{\partial f}{\partial x}(0,0) = 0$.

De même, $\forall y \in \mathbb{R}^*$, $\frac{f(0,y)-f(0,0)}{y-0}=0$, donc $\lim_{n\to 0}\frac{f(0,y)-f(0,0)}{y-0}=0$; donc $\frac{\partial f}{\partial u}(0,0)$ existe et $\frac{\partial f}{\partial u}(0,0)=0$.

Continuité des dérivées partielles en (0,0) :

D'après (*) et (**), $\forall (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\},\$

Daples () et (),
$$\forall (x,y) \in \mathbb{R} \setminus \{(0,0)\},$$

$$\left| \frac{\partial f}{\partial x}(x,y) \right| \leq \frac{6\|(x,y)\|^5}{\|(x,y)\|^4} = 6\|(x,y)\| \text{ et } \left| \frac{\partial f}{\partial y}(x,y) \right| \leq \frac{6\|(x,y)\|^5}{\|(x,y)\|^4} = 6\|(x,y)\|.$$
Donc $\lim_{\substack{(x,y) \to (0,0) \\ (x,y) \to (0,0)}} \frac{\partial f}{\partial x}(x,y) = 0 = \frac{\partial f}{\partial x}(0,0) \text{ et } \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \to (0,0)}} \frac{\partial f}{\partial y}(x,y) = 0 = \frac{\partial f}{\partial y}(0,0).$

Donc $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont continues en (0,0).

Conclusion: $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ existent et sont continues sur \mathbb{R}^2 , donc f est de classe C^1 sur \mathbb{R}^2 .

EXERCICE 58 analyse

Énoncé exercice 58

Mise à jour : 11/05/15

1. Soit E et F deux R-espaces vectoriels normés de dimension finie.

Soit $a \in E$ et soit $f : E \longrightarrow F$ une application.

Donner la définition de «f différentiable en a».

2. Soit $n \in \mathbb{N}^*$. Soit E un \mathbb{R} -espace vectoriel de dimension finie n.

Soit $e = (e_1, e_2, \dots, e_n)$ une base de E.

On pose :
$$\forall x \in E$$
, $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$, où $x = \sum_{i=1}^n x_i e_i$.

On pose : $\forall (x, y) \in E \times E, \ \|(x, y)\| = \max(\|x\|_{\infty}, \|y\|_{\infty}).$

On admet que $\|.\|_{\infty}$ est une norme sur E et que $\|.\|$ est une norme sur $E \times E$.

Soit $B: E \times E \longrightarrow \mathbb{R}$ une forme bilinéaire sur E.

- (a) Prouver que : $\exists C \in \mathbb{R}^+ / \forall (x,y) \in E \times E, |B(x,y)| \leq C||x||_{\infty} ||y||_{\infty}$.
- (b) Montrer que B est différentiable sur $E \times E$ et déterminer sa différentielle en tout $(u_0, v_0) \in E \times E$.

Corrigé exercice 58

1. Soit $f: E \mapsto F$ une application. Soit $a \in E$.

f est différentiable en $a \iff \exists L \in \mathcal{L}_{\mathcal{C}}(E,F)/\text{ au voisinage de }0, f(a+h)=f(a)+L(h)+o(||h||).$ Auquel cas, f est différentiable en a et df(a) = L.

Remarque 1: ||.|| désigne une norme quelconque sur E car, comme E est de dimension finie, toutes les normes sur E sont équivalentes.

Remarque 2 : Comme E est de dimension finie, si $L \in \mathcal{L}(E,F)$, alors $L \in \mathcal{L}_{\mathcal{C}}(E,F)$

2. (a) Soit $(x, y) \in E^2$.

$$\exists \,! \, (x_1, x_2, ..., x_n) \in \mathbb{R}^n / \, x = \sum_{i=1}^n x_i e_i \,\, \text{et} \,\, \exists \,! \, (y_1, y_2, ..., y_n) \in \mathbb{R}^n / \, y = \sum_{j=1}^n y_j e_j.$$

Par bilinéarité de B, on a $B(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j B(e_i, e_j)$.

Donc
$$|B(x,y)| \le \sum_{i=1}^{n} \sum_{j=1}^{n} |x_i| \cdot |y_j| \cdot |B(e_i, e_j)| \le \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |B(e_i, e_j)|\right) ||x||_{\infty} \cdot ||y||_{\infty}.$$

Alors
$$C = \sum_{i=1}^{n} \sum_{j=1}^{n} |B(e_i, e_j)|$$
 convient.

(b) Soit $(u_0, v_0) \in E \times E$.

Par bilinéarité de B on a :

$$\forall (u,v) \in E \times E, B(u_0 + u, v_0 + v) = B(u_0, v_0) + B(u_0, v) + B(u, v_0) + B(u, v). \tag{*}$$

On pose $L((u, v)) = B(u_0, v) + B(u, v_0)$.

Vérifions que L est linéaire sur $E \times E$.

Soit $(x, y) \in E \times E$. Soit $(x', y') \in E \times E$. Soit $\alpha \in \mathbb{R}$.

 $L((x,y) + \alpha(x',y')) = L((x + \alpha x', y + \alpha y')) = B((u_0, y + \alpha y')) + B((x + \alpha x', v_0)).$

Donc par bilinéarité de $B, L((x,y) + \alpha(x',y')) = B((u_0,y)) + \alpha B((u_0,y')) + B((x,v_0)) + \alpha B((x',v_0))$

C'est-à-dire $L((x, y) + \alpha(x', y')) = L((x, y)) + \alpha L((x', y')).$

On en déduit que $L \in \mathcal{L}(E \times E, \mathbb{R})$.

Donc, comme $E \times E$ est de dimension finie, $L \in \mathcal{L}_{\mathcal{C}}(E \times E, \mathbb{R})$. (**)

De plus, d'après 2.(a), $\exists C \in \mathbb{R}^+ / \forall (x,y) \in E^2$, $|B(x,y)| \leq C ||(x||_{\infty} ||y||_{\infty}$.

Donc $\forall (x, y) \in E^2, |B(x, y)| \leq C ||(x, y)||^2$

On en deduit que, au voisinage de (0,0), |B(x,y)| = o(||(x,y)||). (***)

D'après (*),(**) et (***), B est différentiable en (u_0, v_0) et $dB((u_0, v_0)) = L$.

BANQUE ALGÈBRE

EXERCICE 59 algèbre

Énoncé exercice 59

Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n. Soit f l'endomorphisme de E défini par : $\forall P \in E, f(P) = P - P'$.

- 1. Démontrer que f est bijectif de deux manières :
- (a) sans utiliser de matrice de f,
- (b) en utilisant une matrice de f.
- 2. Soit $Q \in E$. Trouver P tel que f(P) = Q.

Indication: si $P \in E$, quel est le polynôme $P^{(n+1)}$?

Corrigé exercice 59

1. (a) L'application f est clairement linéaire. (*)

De plus, $\forall P \in E \setminus \{0\}$, $\deg P' < \deg P$ donc $\deg(P - P') = \deg P$.

Et, si P=0, alors P-P'=0 donc $\deg(P-P')=\deg P=-\infty$

On en déduit que $\forall P \in E$, deg $f(P) = \deg P$.

Donc $f(E) \subset E$. (**)

D'après (*) et (**), f est bien un endomorphisme de E.

Déterminons Ker f.

Soit $P \in \text{Ker } f$.

f(P) = 0 donc P - P' = 0 donc $\deg(P - P') = -\infty$.

Or, d'après ce qui précéde, $\deg(P-P') = \deg P$ donc $\deg P = -\infty$.

Donc P = 0.

On en déduit que $Ker f = \{0\}$.

Donc f est injective.

Or $f \in \mathcal{L}(E)$ et E est de dimension finie donc f est bijective.

(b) Soit e la base canonique de E. Soit A la matrice de f dans la base e.

$$A = \begin{pmatrix} 1 & -1 & & (0) \\ & 1 & \ddots & \\ & & \ddots & -n \\ (0) & & 1 \end{pmatrix}$$

 $\det A = 1$ donc A est inversible et donc f est bijectif.

2. Soit $Q \in E$. D'après 1., $\exists ! P \in E$, tel que f(P) = Q. Alors P - P' = Q, P' - P'' = Q',..., $P^{(n)} - P^{(n+1)} = Q^{(n)}$. Or $P^{(n+1)} = 0$, donc, en sommant ces égalités, $P = Q + Q' + \cdots + Q^{(n)}$.

EXERCICE 60 algèbre

Énoncé exercice 60

Mise à jour : 11/05/15

Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par : f(M) = AM.

Mise à jour : 11/05/15

- 1. Déterminer $\operatorname{Ker} f$.
- 2. f est-il surjectif?
- 3. Trouver une base de $\operatorname{Ker} f$ et une base de $\operatorname{Im} f$.

Corrigé exercice 60

1. Posons
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

On a $f(M) = \begin{pmatrix} a+2c & b+2d \\ 2a+4c & 2b+4d \end{pmatrix}.$

On a
$$f(M) = \begin{pmatrix} a+2c & b+2d \\ 2a+4c & 2b+4d \end{pmatrix}$$
.

$$\text{Alors } M \in \operatorname{Ker} f \Longleftrightarrow \exists \ (a,b,c,d) \in \mathbb{R}^4 \text{ tel que } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ avec } \left\{ \begin{array}{c} a & = -2c \\ b & = -2d \end{array} \right.$$
 C'est-à-dire, $M \in \operatorname{Ker} f \Longleftrightarrow \exists \ (c,d) \in \mathbb{R}^2 \text{ tel que } M = \begin{pmatrix} -2c & -2d \\ c & d \end{pmatrix}$. On en déduit que $\operatorname{Ker} f = \operatorname{Vect} \left\{ \begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix} \right\}$.

On en déduit que
$$\operatorname{Ker} f = \operatorname{Vect} \left\{ \begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix} \right\}$$

2. Ker $f \neq \{0\}$, donc f est non injectif.

Or f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$ et $\mathcal{M}_2(\mathbb{R})$ est de dimension finie.

On en déduit que f est non surjectif.

3. On pose
$$M_1 = \begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}$$
 et $M_2 = \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix}$.

D'après 1., la famille (M_1, M_2) est génératrice de Kerf.

De plus, M_1 et M_2 sont non colinéaires donc (M_1, M_2) est libre.

Donc, (M_1, M_2) est une base de Kerf.

Par la formule du rang, rgf = 2.

On pose
$$M_3 = f(E_{1,1}) = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$$
 et $M_4 = f(E_{2,2}) = \begin{pmatrix} 0 & 2 \\ 0 & 4 \end{pmatrix}$

 M_3 et M_4 sont non colinéaires donc (M_3, M_4) est une famille libre de Im f. Comme rgf = 2, (M_3, M_4) est une base de Im f.

EXERCICE 61 algèbre

Énoncé exercice 61

On note $\mathcal{M}_n(\mathbb{C})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients complexes.

Pour
$$A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathcal{M}_n(\mathbb{C})$$
, on pose : $||A|| = \sup_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}} |a_{i,j}|$.

- 1. Prouver que || || est une norme sur $\mathcal{M}_n(\mathbb{C})$
- 2. Démontrer que : $\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$, $||AB|| \leq n ||A|| ||B||$. Puis, démontrer que, pour tout entier $p \ge 1$, $||A^p|| \le n^{p-1} ||A||^p$
- 3. Démontrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, la série $\sum \frac{A^p}{n!}$ est absolument convergente. Est-elle convergente?

Corrigé exercice 61

- 1. On remarque que $\forall A \in \mathcal{M}_n(\mathbb{C}), ||A|| \ge 0$.
- i- Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_n(\mathbb{C})$ telle que ||A|| = 0.

Comme $\forall (i,j) \in ([\![1,n]\!])^2, |a_{i,j}| \ge 0$, on en déduit que $\forall (i,j) \in ([\![1,n]\!])^2, |a_{i,j}| = 0$, c'est-à-dire $a_{i,j} = 0$.

ii- Soit
$$A = (a_{i,j})_{1 \leq i \leq n} \in M_n(\mathbb{C})$$
 et soit $\lambda \in \mathbb{C}$

$$\begin{aligned} & \text{Dinc } A = 0. \\ & \text{ii- Soit } A = (a_{i,j})_{1 \leqslant i \leqslant n} \in \mathcal{M}_n\left(\mathbb{C}\right) \text{ et soit } \lambda \in \mathbb{C}. \\ & \|\lambda A\| = \sup_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} |\lambda a_{i,j}| = \sup_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} |\lambda| |a_{i,j}| = |\lambda| \sup_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} |a_{i,j}| = |\lambda| \|A\|. \\ & \text{iii- Soit } (A,B) \in \left(\mathcal{M}_n\left(\mathbb{C}\right)\right)^2 \text{ avec } A = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} \text{ et } B = (b_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} \end{aligned}$$

iii- Soit
$$(A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$$
 avec $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ et $B = (b_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$

On a
$$||A+B|| = \sup_{1 \leqslant i \leqslant n} |a_{i,j}+b_{i,j}|.$$

Or,
$$\forall (i,j) \in ([\![1,n]\!])^2, |a_{i,j}+b_{i,j}| \leqslant |a_{i,j}|+|b_{i,j}| \leqslant \|A\|+\|B\|$$
. On en déduit que $\|A+B\| \leqslant \|A\|+\|B\|$.

2. Soit
$$(A,B) \in (\mathcal{M}_n(\mathbb{C}))^2$$
 avec $A = (a_{i,j})_{\substack{1 \le i \le n, \\ 1 \le j \le n}}$ $B = (b_{i,j})_{\substack{1 \le i \le n, \\ 1 \le j \le n}}$

Posons
$$C = AB$$
.

On a
$$C=(c_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}}$$
 avec $\forall\,(i,j)\in([\![1,n]\!])^2,\,c_{i,j}=\sum_{k=1}^na_{i,k}b_{k,j}.$

Donc,
$$\forall (i, j) \in ([\![1, n]\!])^2$$
, $|c_{i,j}| \leq \sum_{k=1}^n |a_{i,k}| \cdot |(b_{k,j}| \leq \sum_{k=1}^n ||A|| ||B|| = n ||A|| ||B||$.

On en déduit que $\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$, $||AB|| \leq n ||A|| ||B||$. (*)

Pour tout entier naturel $p \ge 1$, notons (P_p) la propriété : $||A^p|| \le n^{p-1} ||A||^p$.

Prouvons que (P_n) est vraie par récurrence.

Pour
$$p = 1$$
, $||A^1|| = n^0 ||A||^1$, donc (P_1) est vraie.

Supposons la propriété (P_p) vraie pour un rang $p \ge 1$, c'est-à-dire $||A^p|| \le n^{p-1} ||A||^p$.

Prouvons que (P_{p+1}) est vraie.

$$||A^{p+1}|| = ||A \times A^p|| \text{ donc, d'après (*), } ||A^{p+1}|| \le n ||A|| ||A^p||.$$

Alors, en utilisant l'hypothèse de récurrence, $||A^{p+1}|| \le n ||A|| n^{p-1} ||A||^p = n^p ||A||^{p+1}$

On en déduit que (P_{p+1}) est vraie.

3. On a
$$\forall p \in \mathbb{N}^*$$
, $\left\| \frac{A^p}{p!} \right\| \leqslant \frac{1}{n} \frac{(n \|A\|)^p}{p!}$.

Or,
$$\forall x \in \mathbb{R}$$
, la série exponentielle $\sum \frac{x^p}{p!}$ converge, donc $\sum \frac{(n||A||)^p}{p!}$ converge.

Donc, par comparaison de séries à termes positifs, la série $\sum \frac{A_p^{P}}{p!}$ est absolument convergente.

Or $\mathcal{M}_n(\mathbb{C})$ est de dimension finie, donc $\sum \frac{A^p}{n!}$ converge.

EXERCICE 62 algèbre

Énoncé exercice 62

Mise à jour : 11/05/15

Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} .

Soient f et g deux endomorphismes de E tels que $f \circ g = \mathrm{Id}$.

- 1. Démontrer que $Ker(g \circ f) = Ker f$.
- 2. Démontrer que $\operatorname{Im}(g \circ f) = \operatorname{Im} g$.
- 3. Démontrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} g$.

Corrigé exercice 62

```
1. On a toujours \operatorname{Ker} f \subset \operatorname{Ker} (g \circ f). (*)
```

```
Prouvons que Ker(g \circ f) \subset Ker f.
Soit x \in \text{Ker}(g \circ f).
On a g \circ f(x) = 0_E donc f \circ g \circ f(x) = f(0_E) = 0_E.
Or f \circ g = \text{Id donc } f(x) = 0_E.
Donc x \in \operatorname{Ker} f.
On en déduit que Ker(g \circ f) \subset Ker f. (**)
```

D'après (*) et (**),
$$Ker(q \circ f) = Ker f$$
.

2. On a toujours $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$. (***)

```
Prouvons que \operatorname{Im} g \subset \operatorname{Im} (g \circ f).
Soit y \in \text{Im} g.
\exists x \in E \text{ tel que } y = g(x).
Or f \circ g = \text{Id donc } y = g \circ f \circ g(x) = (g \circ f)(g(x)).
C'est-à-dire y \in \text{Im}(g \circ f).
On en déduit que \operatorname{Im} g \subset \operatorname{Im} (g \circ f). (****)
Donc, d'après (***) et (****), \text{Im}(g \circ f) = \text{Im}g
```

3. Soit $x \in \text{Ker} f \cap \text{Im} g$.

```
Alors, f(x) = 0 et \exists a \in E tel que x = g(a).
Donc f \circ g(a) = 0.
```

Done
$$f \circ g(a) = 0$$
.

Or
$$f \circ g = \text{Id}$$
, donc $a = 0$.

Or
$$x = g(a)$$
 donc $x = 0$.

Donc
$$\operatorname{Ker} f \cap \operatorname{Im} q = \{0_E\}$$

On peut écrire
$$x = (x - g(f(x))) + g(f(x))$$
 avec : $g(f(x)) \in \operatorname{Im} g$ et $x - g(f(x)) \in \operatorname{Ker} f$ car $f(x - g(f(x))) = f(x) - (f \circ g)(f(x)) = f(x) - f(x) = 0_E$. Ainsi $E = \operatorname{Ker} f + \operatorname{Im} g$.

On en déduit que $E = \text{Ker } f \oplus \text{Im } g$.

Remarque 1:

On aurait pu remarquer que $g \circ f$ est un projecteur et conclure plus immédiatement.

Remarque 2:

On aurait pu également raisonner par analyse et synthèse.

Page 87

EXERCICE 63 algèbre

Énoncé exercice 63

Soit un entier $n \ge 1$. On considère la matrice carrée d'ordre n à coefficients réels :

$$A_n = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & -1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

Mise à jour : 11/05/15

Pour $n \ge 1$, on désigne par D_n le déterminant de A_n .

- 1. Démontrer que $D_{n+2} = 2D_{n+1} D_n$.
- 2. Déterminer D_n en fonction de n.
- 3. Justifier que la matrice A est diagonalisable. Le réel 0 est-il valeur propre de A?

Corrigé exercice 63

1. C'est un déterminant tri-diagonal, il suffit de développer selon la première ligne.

$$D_{n+2} = 2D_{n+1} + \begin{vmatrix} -1 & -1 & & & (0) \\ 0 & 2 & -1 & & \\ & -1 & 2 & \ddots & \\ & & \ddots & \ddots & -1 \\ & & (0) & & -1 & 2 \end{vmatrix}$$

Puis, en développant le second déterminant obtenu selon la première colonne, on obtient $D_{n+2}=2D_{n+1}-D_n.$

- 2. $(D_n)_{n>1}$ est une suite récurrente linéaire d'ordre 2 d'équation caractéristique $r^2-2r+1=0$. Donc, son terme général est de la forme $D_n=(\lambda n+\mu)\times 1^n$. Puisque $D_1=2$ et $D_2=3$, on obtient $D_n=n+1$.
- 3. La matrice A_n est symétrique réelle donc diagonalisable. $D_n = n+1 \neq 0 \text{ donc } A_n \text{ est inversible.}$ Donc l'endomorphisme canoniquement associé à A_n est injectif. On en déduit que 0 n'est pas valeur propre de A_n .

EXERCICE 64 algèbre

Énoncé exercice 64

Soit f un endomorphisme d'un espace vectoriel E de dimension n.

- 1. Démontrer que : $E = \operatorname{Im} f \oplus \operatorname{Ker} f \Longrightarrow \operatorname{Im} f = \operatorname{Im} f^2$.
- 2. (a) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Ker} f = \operatorname{Ker} f^2$.
- (b) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \Longrightarrow E = \operatorname{Im} f \oplus \operatorname{Ker} f$.

Corrigé exercice 64

```
1. Supposons E = \operatorname{Im} f \oplus \operatorname{Ker} f.
Indépendamment de l'hypothèse, on peut affirmer que \operatorname{Im} f^2 \subset \operatorname{Im} f (*)
```

Montrons que $\text{Im} f \subset \text{Im} f^2$.

Soit $y \in \text{Im} f$.

Alors, $\exists x \in E$ tel que y = f(x).

Or $E = \text{Im} f \oplus \text{Ker} f$, donc $\exists (a, b) \in E \times \text{Ker} f$ tel que x = f(a) + b.

On a alors $y = f^2(a) \in \text{Im} f^2$.

Ainsi $\operatorname{Im} f \subset \operatorname{Im} f^2$ (**)

D'après (*) et (**), $\text{Im} f = \text{Im} f^2$.

2. (a) On a $\mathrm{Im} f^2 \subset \mathrm{Im} f$ et $\mathrm{Ker} f \subset \mathrm{Ker} f^2$.

On en déduit que $\mathrm{Im} f^2 = \mathrm{Im} f \Longleftrightarrow \mathrm{rg} f^2 = \mathrm{rg} f$ et $\mathrm{Ker} f = \mathrm{Ker} f^2 \Longleftrightarrow \dim \mathrm{Ker} f = \dim \mathrm{Ker} f^2$.

Alors, en utilisant le théorème du rang,

 $\operatorname{Im} f = \operatorname{Im} f^2 \Leftrightarrow \operatorname{rg} f = \operatorname{rg} f^2 \Leftrightarrow \dim \operatorname{Ker} f = \dim \operatorname{Ker} f^2 \Leftrightarrow \operatorname{Ker} f = \operatorname{Ker} f^2.$

(b) Supposons $\text{Im} f = \text{Im} f^2$.

Soit $x \in \operatorname{Im} f \cap \operatorname{Ker} f$.

 $\exists a \in E \text{ tel que } x = f(a) \text{ et } f(x) = 0_E.$

On en déduit que $f^2(a) = 0_E$ c'est-à-dire $a \in \operatorname{Ker} f^2$.

Or, d'après l'hypothèse et 2.(a), $\operatorname{Ker} f^2 = \operatorname{Ker} f$ donc $a \in \operatorname{Ker} f$ c'est-à-dire $f(a) = 0_E$.

C'est-à-dire x = 0.

Ainsi $\operatorname{Im} f \cap \operatorname{Ker} f = \{0_E\}.$ (***)

De plus, d'après le théorème du rang, $\dim \operatorname{Im} f + \dim \operatorname{Ker} f = \dim E$. (****)

Donc, d'après (***) et (****), $E = \operatorname{Im} f \oplus \operatorname{Ker} f$.

CC BY-NC-SA 3.0 FR Page 89 CC BY-NC-SA 3.0 FR Page 90

EXERCICE 65 algèbre

Énoncé exercice 65

Soit u un endomorphisme d'un espace vectoriel E sur le corps \mathbb{K} (= \mathbb{R} ou \mathbb{C}). On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans K.

- 1. Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ (PQ)(u) = P(u) \circ Q(u)$.
- 2. (a) Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ P(u) \circ Q(u) = Q(u) \circ P(u)$.
- (b) Démontrer que, pour tout $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X]$: $(P \text{ polynôme annulateur de } u) \Longrightarrow (PQ \text{ polynôme annulateur de } u)$
- 3. Soit $A = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$

Écrire le polynôme caractéristique de A, puis en déduire que le polynôme $R = X^4 + 2X^3 + X^2 - 4X$ est un polynôme annulateur de A.

Mise à jour : 11/05/15

Corrigé exercice 65

1. Soit
$$(P,Q) \in (\mathbb{K}[X])^2$$

$$P = \sum_{p=0}^{n} a_p X^p \text{ et } Q = \sum_{q=0}^{m} b_q X^q$$

Donc
$$PQ = \sum_{p=0}^{n} \sum_{q=0}^{m} (a_p b_q X^{p+q})$$

$$P = \sum_{p=0}^{n} a_p X^p \text{ et } Q = \sum_{q=0}^{m} b_q X^q.$$

$$\text{Donc } PQ = \sum_{p=0}^{n} \sum_{q=0}^{m} \left(a_p b_q X^{p+q} \right).$$

$$\text{Donc } (PQ)(u) = \sum_{p=0}^{n} \sum_{q=0}^{m} \left(a_p b_q u^{p+q} \right) \quad (*)$$

$$\text{Or } P(u) \circ Q(u) = \left(\sum_{p=0}^n a_p u^p\right) \circ \left(\sum_{q=0}^m b_q u^q\right) = \sum_{p=0}^n \left(a_p u^p \circ \sum_{q=0}^m b_q u^q\right).$$

D'après (*) et (**), $(PQ)(u) = P(u) \circ Q(u)$

2. (a) Soit $(P, Q) \in (\mathbb{K}[X])^2$.

D'après 1., $P(u) \circ Q(u) = (PQ)(u)$.

De même, d'après 1., $Q(u) \circ P(u) = (QP)(u)$.

Or PQ = QP donc (PQ)(u) = (QP)(u).

On en déduit que $P(u) \circ Q(u) = Q(u) \circ P(u)$.

(b) Soit $(P,Q) \in (\mathbb{K}[X])^2$.

On suppose que P est annulateur de u.

Prouvons que PQ est annulateur de u.

D'après 1. et 2.(a), $(PQ)(u) = P(u) \circ Q(u) = Q(u) \circ P(u)$. (***)

Or P est annulateur de u donc P(u) = 0 donc, d'après (***), (PQ)(u) = 0.

On en déduit que PQ est annulateur de u.

Notons P_A(X) le polynôme caractéristique de A.

$$P_A(X) = \det(XI_2 - A)$$
. On trouve $P_A(X) = X(X - 1)$.

Soit
$$R = X^4 + 2X^3 + X^2 - 4X$$
.

On remarque que R(0) = R(1) = 0 et on en déduit que R est factorisable par X(X-1).

C'est-à-dire : $\exists Q \in \mathbb{K}[X] / R = X(X-1)Q$.

Or, d'après le théorème de Cayley-Hamilton, $P_A(X) = X(X-1)$ annule A.

Donc, d'après 2.b., comme $R = P_A(X)Q$, R est annulateur de A.

EXERCICE 66 algèbre

Énoncé exercice 66

On note p un entier naturel supérieur ou égal à 2.

On considère dans \mathbb{Z} la relation d'équivalence \mathcal{R} définie par : $x \mathcal{R} y \stackrel{\text{def}}{\iff} \exists k \in \mathbb{Z}$ tel que x - y = kp.

On note $\mathbb{Z}/p\mathbb{Z}$ l'ensemble des classes d'équivalence pour cette relation \mathcal{R} .

- 1. Quelle est la classe d'équivalence de 0? Quelle est celle de p?
- 2. Donner soigneusement la définition de l'addition usuelle et de la multiplication usuelle dans $\mathbb{Z}/p\mathbb{Z}$. On justifiera que ces définitions sont cohérentes.
- 3. On admet que, muni de ces opérations, $\mathbb{Z}/p\mathbb{Z}$ est un anneau. Démontrer que $\mathbb{Z}/p\mathbb{Z}$ est un corps si et seulement si p est premier.

Corrigé exercice 66

- 1. Les classes d'équivalences de 0 et de p sont toutes deux égales à l'ensemble des multiples de p, c'est-à-dire à $p\mathbb{Z}$.
- 2. Soit $(\overline{a}, \overline{b}) \in (\mathbb{Z}/p\mathbb{Z})^2$.

On pose $\overline{a} + \overline{b} = \overline{a+b}$ et $\overline{a} \times \overline{b} = \overline{ab}$.

Cette définition est cohérente car elle ne dépend pas des représentants a et b choisis pour \overline{a} et \overline{b} .

En effet, soit $(a', b') \in \mathbb{Z}^2$ tel que $\overline{a'} = \overline{a}$ et $\overline{b'} = \overline{b}$.

Alors il existe $n \in \mathbb{Z}$ tel que a' = a + np et il existe $m \in \mathbb{Z}$ tel que b' = b + mp.

Donc a' + b' = a + b + (n + m)p, c'est-à-dire $\overline{a' + b'} = \overline{a + b}$.

Et a'b' = ab + (am + bn + nmp)p, c'est-à-dire $\overline{a'b'} = \overline{ab}$.

3. Supposons p premier.

Alors $\mathbb{Z}/p\mathbb{Z}$ est commutatif et non réduit à $\{\bar{0}\}$ car $p \geq 2$.

Soit $\bar{a} \in \mathbb{Z}/p\mathbb{Z}$ tel que $\bar{a} \neq \bar{0}$.

 $\bar{a} \neq \bar{0}$ donc p ne divise pas a . Or p est premier donc p est premier avec a.

Par le théorème de Bézout, il existe $(u, v) \in \mathbb{Z}^2$ tel que au + pv = 1 donc $\bar{a} \times \bar{u} = \bar{1}$.

Donc \bar{a} est inversible et $(\bar{a})^{-1} = \bar{u}$.

Ainsi, les éléments non nuls de $\mathbb{Z}/p\mathbb{Z}$ sont inversibles et finalement $\mathbb{Z}/p\mathbb{Z}$ est un corps.

Supposons que $\mathbb{Z}/p\mathbb{Z}$ est un corps.

Soit $k \in [2, p-1]$.

 $\overline{k} \neq \overline{0}$ donc, comme $\mathbb{Z}/p\mathbb{Z}$ est un corps, il existe $k' \in \mathbb{Z}$ tel que $\overline{k} \, \overline{k'} = \overline{1}$.

C'est-à-dire il existe $v \in \mathbb{Z}$ tel que kk' = 1 + vp c'est-à-dire k'k - vp = 1.

Donc, d'après le théorème de Bézout, $k \wedge p = 1$ et donc, comme $k \neq 1$, k ne divise pas p.

On en déduit que les seuls diviseurs positifs de p sont 1 et p.

Donc p est premier.

CC BY-NC-SA 3.0 FR Page 91 CC BY-NC-SA 3.0 FR Page 92

EXERCICE 67 algèbre

Énoncé exercice 67

Soit la matrice
$$M = \begin{pmatrix} 0 & a & c \\ b & 0 & c \\ b & -a & 0 \end{pmatrix}$$
 où a, b, c sont des réels.

Corrigé exercice 67

$$\chi_M(X) = \det(XI_3 - M)$$

Après calculs, on trouve,
$$\chi_M(X) = X(X^2 + ca - ba - bc)$$
.

Premier cas :
$$ca - ba - bc < 0$$

M est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ car M possède trois valeurs propres réelles distinctes.

Elle est, a fortiori, diagonalisable dans $\mathcal{M}_3(\mathbb{C})$.

Deuxième cas : ca - ba - bc = 0

Alors, 0 est la seule valeur propre de M.

Ainsi, si M est diagonalisable, alors M est semblable à la matrice nulle c'est-à-dire M=0 ou encore

a=b=c=0. Réciproquement, si a=b=c=0 alors M=0 et donc M est diagonalisable.

On en déduit que M est diagonalisable si et seulement si a=b=c=0.

Troisième cas : ca - ba - bc > 0

Alors 0 est la seule valeur propre réelle et donc M n'est pas diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ car $\chi_M(X)$ n'est pas

En revanche, M est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ car elle admet trois valeurs propres complexes distinctes.

EXERCICE 68 algèbre

Énoncé exercice 68

Soit la matrice
$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
.

- 1. Démontrer que A est diagonalisable de quatre manières :
- (a) sans calcul.
- (b) en calculant directement le déterminant $\det(\lambda I_3 A)$, où I_3 est la matrice identité d'ordre 3, et en déterminant les sous-espaces propres,
- (c) en utilisant le rang de la matrice.
- (d) en calculant A².
- 2. On suppose que A est la matrice d'un endomorphisme u d'un espace euclidien dans une base orthonormée. Trouver une base orthonormée dans laquelle la matrice de u est diagonale.

Corrigé exercice 68

- 1. (a) La matrice A est symétrique réelle donc diagonalisable dans une base orthonormée de vecteurs propres.
- (b) On obtient $\det(\lambda I_3 A) = \lambda^2(\lambda 3)$.

$$E_3(A) = \operatorname{Vect}\left(\begin{pmatrix}1\\-1\\1\end{pmatrix}\right) \text{ et } E_0(A): x-y+z=0.$$
 Donc A est diagonalisable car $\dim E_3(A) + \dim E_0(A) = 3.$

(c) $rgA = 1 \text{ donc } dim E_0(A) = 2.$

On en déduit que 0 est valeur propre au moins double de la matrice A.

Puisque trA = 3 et que trA est la somme des valeurs propres complexes de A comptées avec leur multiplicité, la matrice A admet une troisième valeur propre qui vaut 3 et qui est nécessairement simple. Comme dans la question précédente, on peut conclure que A est diagonalisable car $\dim E_3(A) + \dim E_0(A) = 3.$

- (d) On obtient $A^2 = 3A$ donc A est diagonalisable car cette matrice annule le polynôme $X^2 3X$ qui est scindé à racines simples.
- 2. On note $e = (\vec{u}, \vec{v}, \vec{w})$ la base canonique de \mathbb{R}^3 .

On note (|) le produit scalaire canonique sur \mathbb{R}^3 .

Soit f l'endomorphisme canoniquement associé à A.

A est symétrique réelle et e est une base orthonormée, donc f est un endomorphisme symétrique et, d'après le théorème spectral, f est diagonalisable dans une base orthonormée de vecteurs propres.

On sait également que les sous-espaces propres sont orthogonaux donc il suffit de trouver une base orthonormée de chaque sous-espace propre pour construire une base orthonormée de vecteurs propres. $E_3(f) = \text{Vect}(1, -1, 1) \text{ et } E_0(f) : x - y + z = 0.$

CC BY-NC-SA 3.0 FR

Donc $\vec{u} = \frac{1}{\sqrt{3}}(\vec{i} - \vec{j} + \vec{k})$ est une base orthonormée de $E_3(f)$. $\vec{i} + \vec{j}$ et $\vec{i} - \vec{j} - 2\vec{k}$ sont deux vecteurs orthogonaux de $E_0(f)$. On les normalise et on pose $\vec{v} = \frac{1}{\sqrt{2}}(\vec{i} + \vec{j})$ et $\vec{w} = \frac{1}{\sqrt{6}}(\vec{i} - \vec{j} - 2\vec{k})$.

Alors (\vec{v}, \vec{w}) une base orthonormée de $E_0(f)$.

On en déduit que $(\vec{u}, \vec{v}, \vec{w})$ est une base orthonormée de vecteurs propres de f.

EXERCICE 69 algèbre

Énoncé exercice 69

On considère la matrice $A=\begin{pmatrix}0&a&1\\a&0&1\\a&1&0\end{pmatrix}$ où a est un réel.

- 1. Déterminer le rang de A.
- 2. Pour quelles valeurs de a, la matrice A est-elle diagonalisable?

Corrigé exercice 69

1. Après calcul, on trouve det A = a(a + 1).

Premier cas : $a \neq 0$ et $a \neq -1$

Alors, $\det A \neq 0$ donc A est inversible.

Donc rgA = 3.

Deuxième cas : a = 0

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
donc rg $A = 2$.

Troisième cas : a = -1

 $A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \text{ donc } \operatorname{rg} A \geqslant 2 \text{ car les deux première colonnes de } A \text{ sont non colinéaires.}$

Or $\det A = 0$ donc $\operatorname{rg} A \leqslant 2$.

On en déduit que rgA = 2.

2. Notons $P_A(X)$ le polynôme caractéristique de A.

$$P_A(X) = \begin{vmatrix} X & -a & -1 \\ -a & X & -1 \\ -a & -1 & X \end{vmatrix}$$

Alors, en ajoutant à la première colonne la somme des deux autres puis, en soustrayant la première ligne aux deux autres lignes, on trouve successivement :

$$P_A(X) = (X - a - 1) \begin{vmatrix} 1 & -a & -1 \\ 1 & X & -1 \\ 1 & -1 & X \end{vmatrix} = (X - a - 1) \begin{vmatrix} 1 & -a & -1 \\ 0 & X + a & 0 \\ 0 & -1 + a & X + 1 \end{vmatrix}$$

Donc, en développant par rapport à la première colonne,

$$P_A(X) = (X - a - 1)(X + a)(X + 1)$$
.

Les racines de $P_A(X)$ sont a+1, -a et -1.

$$a+1 = -a \iff a = -\frac{1}{2}$$
.
 $a+1 = -1 \iff a = -2$.

$$-a = -1 \iff a = 1.$$

Ce qui amène aux trois cas suivants :

Premier cas: $a \neq 1$, $a \neq -2$ et $a \neq -\frac{1}{2}$

Alors A admet trois valeurs propres disctinctes.

Donc A est diagonalisable.

Deuxième cas : a = 1

$$P_A(X) = (X-2)(X+1)^2$$
.

Alors A est diagonalisable si et seulement si dim $E_{-1} = 2$, c'est-à-dire $rg(A + I_3) = 1$.

Or
$$A + I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 donc $rg(A + I_3) = 1$

Donc A est diagonalisable.

Troisième cas : a = -2

Alors,
$$P_A(X) = (X+1)^2(X-2)$$
.

$$A + \mathbf{I}_3 = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 1 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$

Les deux premières colonnes de $A + I_3$ ne sont pas colinéaires, donc $rg(A + I_3) \ge 2$.

De plus, -1 est valeur propre de A, donc $rg(A + I_3) \leq 2$.

Ainsi, $rg(A + I_3) = 2$ et dim $E_{-1} = 1$.

Or l'ordre multiplicité de la valeur propre -1 dans le polynôme caractéristique est 2.

On en déduit que A n'est pas diagonalisable.

Quatrième cas : $a = -\frac{1}{2}$

$$P_A(X) = (X - \frac{1}{2})^2(X + 1)$$

$$A - \frac{1}{2}I_3 = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & 1\\ -\frac{1}{2} & -\frac{1}{2} & 1\\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix}$$

Les deux premières colonnes de $A-\frac{1}{2}\mathrm{I}_3$ sont non colinéaires, donc $\mathrm{rg}(A-\frac{1}{2}\mathrm{I}_3)\geqslant 2$.

De plus, $\frac{1}{2}$ est valeur propre donc $\operatorname{rg}(A - \frac{1}{2}I_3) \leqslant 2$.

Ainsi,
$$rg(A - \frac{1}{2}I_3) = 2$$
 et dim $E_{\frac{1}{2}} = 1$.

Or l'ordre de multiplicité de la valeur propre $\frac{1}{2}$ dans le polynôme caractéristique est 2.

On en déduit que A est non diagonalisable.

EXERCICE 70 algèbre

Énoncé exercice 70

Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$$
.

- 1. Déterminer les valeurs propres et les vecteurs propres de A. A est-elle diagonalisable?
- 2. Soit $(a,b,c) \in \mathbb{C}^3$ et $B = a I_3 + b A + c A^2$, où I_3 désigne la matrice identité d'ordre 3. Déduire de la question 1. les éléments propres de B.

Corrigé exercice 70

1. $\chi_A(X) = (X^3 - 1)$ donc $SpA = \{1, j, j^2\}.$

On en déduit que A est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ car elle admet trois valeurs propres distinctes. On pose $E_1(A) = \operatorname{Ker}(A - I_3)$, $E_j(A) = \operatorname{Ker}(A - j I_3)$ et $E_{j^2}(A) = \operatorname{Ker}(A - j^2 I_3)$.

Après résolution, on trouve
$$E_1(A) = \text{Vect}\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}\right)$$
 et $E_j(A) = \text{Vect}\left(\begin{pmatrix} 1\\j^2\\j \end{pmatrix}\right)$.

Et, par conjugaison (comme
$$A$$
 est à coefficients réels), $E_{j^2}(A) = \text{Vect}\left(\begin{pmatrix} 1\\ j\\ j^2 \end{pmatrix}\right)$.

2. Soit $e=(e_1,e_2,e_3)$ la base canonique de \mathbb{C}^3 , vu comme un \mathbb{C} -espace vectoriel. Soit f l'endomorphisme canoniquement associé à A.

On pose
$$e_1' = (1, 1, 1), e_2' = (1, j^2, j), e_3' = (1, j, j^2)$$
 et $e' = (e_1', e_2', e_3')$.

D'après 1.,
$$e'$$
 est une base de vecteurs propres pour f .

Soit
$$P$$
 la matrice de passage de e à e' . On a $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j^2 & j \\ 1 & j & j^2 \end{pmatrix}$. Soit $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{pmatrix}$.

Alors,
$$D = P^{-1}AP$$
, c'est-à-dire $A = PDP^{-1}$.

On en déduit que
$$B=a\mathrm{I}_3+bPDP^{-1}+cPD^2P^{-1}=P\left(aI_3+bD+cD^2\right)P^{-1}$$

C'est-à-dire, si on pose
$$Q = a + bX + cX^2$$
, alors $B = P\begin{pmatrix} Q(1) & 0 & 0 \\ 0 & Q(j) & 0 \\ 0 & 0 & Q(j^2) \end{pmatrix} P^{-1}$.

On en déduit que B est diagonalisable et que les valeurs propres de B sont Q(1), Q(j) et $Q(j^2)$.

De plus,
$$E_{Q(1)}(B) = E_1(A) = \text{Vect}\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}\right) E_{Q(j)}(B) = E_j(A) = \text{Vect}\left(\begin{pmatrix} 1\\j^2\\j \end{pmatrix}\right)$$
 et $E_{Q(j^2)}(B) = E_{j^2}(A) = \text{Vect}\left(\begin{pmatrix} 1\\j\\j^2 \end{pmatrix}\right)$.

EXERCICE 71 algèbre

Énoncé exercice 71

Mise à jour : 11/05/15

Soit p la projection vectorielle de \mathbb{R}^3 , sur le plan P d'équation x+y+z=0, parallèlement à la droite D d'équation $x=\frac{y}{2}=\frac{z}{2}$.

- 1. Vérifier que $\mathbb{R}^3 = P \oplus D$.
- 2. Soit $u = (x, y, z) \in \mathbb{R}^3$.

Déterminer p(u) et donner la matrice de p dans la base canonique de \mathbb{R}^3 .

3. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de p est diagonale.

Corrigé exercice 71

1. D = Vect((1, 2, 3)).

 $(1,2,3) \notin P$ car les coordonnées du vecteur (1,2,3) ne vérifient pas l'équation de P.

Donc
$$D \cap P = \{0\}$$
. (*)

De plus, dim
$$D + \dim P = 1 + 2 = \dim \mathbb{R}^3$$
. (**)

D'après (*) et (**),
$$\mathbb{R}^3 = P \oplus D$$
.

2. Soit $u = (x, y, z) \in \mathbb{R}^3$.

Par définition d'une projection,
$$p(u) \in P$$
 et $u - p(u) \in D$.
 $u - p(u) \in D$ signifie que $\exists \alpha \in \mathbb{R}$ tel que $u - p(u) = \alpha(1, 2, 3)$.

On en déduit que
$$p(u) = (x - \alpha, y - 2\alpha, z - 3\alpha)$$
. (***)

Or
$$p(u) \in P$$
 donc $(x - \alpha) + (y - 2\alpha) + (z - 3\alpha) = 0$, c'est-à-dire $\alpha = \frac{1}{6}(x + y + z)$.

Et donc, d'après (***),
$$p(u) = \frac{1}{6}(5x - y - z, -2x + 4y - 2z, -3x - 3y + 3z).$$

Soit $e = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit
$$e = (e_1, e_2, e_3)$$
 is base canonique de \mathbb{R} .
Soit A la matrice de p dans la base e . On a $A = \frac{1}{6} \begin{pmatrix} 5 & -1 & -1 \\ -2 & 4 & -2 \\ -3 & -3 & 3 \end{pmatrix}$.

3. On pose
$$e'_1 = (1, 2, 3)$$
, $e'_2 = (1, -1, 0)$ et $e'_3 = (0, 1, -1)$. e'_1 est une base de D et (e'_2, e'_3) est une base de P .

Or
$$\mathbb{R}^3 = P \oplus D$$
 donc $e' = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 .

De plus
$$e'_1 \in D$$
 donc $p(e'_1) = 0$. $e'_2 \in P$ et $e'_3 \in P$ donc $p(e'_2) = e'_2$ et $p(e'_3) = e'_3$.

Ainsi,
$$M(p, e') = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

EXERCICE 72

Énoncé exercice 72

Soit f un endomorphisme d'un espace vectoriel E de dimension n, et soit $e = (e_1, \ldots, e_n)$ une base de E. On suppose que $f(e_1) = f(e_2) = \cdots = f(e_n) = v$, où v est un vecteur donné de E.

- 1. Donner le rang de f.
- 2. f est-il diagonalisable? (discuter en fonction du vecteur v)

Corrigé exercice 72

- 1. Si $v = 0_E$ alors f est l'endomorphisme nul et donc $\operatorname{rg} f = 0$. Si $v \neq 0$ alors $\operatorname{rg} f = 1$ car, si on note $c_1, c_2, ..., c_n$ les colonnes de la matrice A de f dans la base canonique e, alors $c_1 \neq 0$ et $c_1 = c_2 = ... = c_n$.
- 2. Premier cas : $v = 0_E$

alors f est l'endomorphisme nul et donc f est diagonalisable.

Deuxième cas : $v \neq 0_E$.

Alors $\operatorname{rg} f = 1$ et donc $\dim \operatorname{Ker} f = n - 1$.

Donc 0 est valeur propre de f et, si on note m_0 l'ordre de multiplicité de la valeur propre 0 dans le

polynôme caractéristique de f, alors $m_0 \ge n-1$. On en déduit alors que : $\exists \lambda \in \mathbb{K} / P_f(X) = X^{n-1}(X-\lambda)$. (*)

Et donc, $tr(f) = \lambda$.

e est une base de E donc : $\exists ! (x_1, x_2, ..., x_n) \in \mathbb{K}^n / v = x_1 e_1 + x_2 e_2 + ... + x_n e_n$.

En écrivant la matrice de f dans la base e, on obtient alors $tr(f) = x_1 + x_2 + ... + x_n$.

Ainsi, $\lambda = x_1 + x_2 + ... + x_n$. (**)

Ce qui amène à la discussion suivante :

Premier sous- cas : si $x_1 + x_2 + ... + x_n \neq 0$

D'après (*) et (**), $\lambda = x_1 + x_2 + ... + x_n$ est une valeur propre non nulle de f et dim $E_{\lambda} = 1$.

Ainsi, dim E_0 + dim E_{λ} = n et donc f est diagonalisable.

Deuxième sous- cas : si $x_1 + x_2 + ... + x_n = 0$

Alors, d'après (*) et (**), $P_f(X) = X^n$.

Donc 0 est valeur propre d'ordre de multiplicité n dans le polynôme caractéristique.

Or dim $E_0 = n - 1$.

Donc f n'est pas diagonalisable.

Remarque dans le cas où $v \neq 0$

Comme $v = x_1 e_1 + x_2 e_2 + ... + x_n e_n$, alors, par linéarité de f, $f(v) = x_1 f(e_1) + x_2 f(e_2) + ... + x_n f(e_n)$.

C'est-à-dire, $f(v) = (x_1 + x_2 + ... + x_n)v$. (***)

On en déduit que : $x_1 + x_2 + ... x_n = 0 \iff f(v) = 0$.

De plus, dans le cas où $x_1+x_2+...x_n\neq 0$, alors, d'après (***), v est un vecteur propre associé à la valeur propre $\lambda=x_1+x_2+...+x_n$ et d'après ce qui précéde, $E_f(\lambda)=\mathrm{Vect}(v)$.

EXERCICE 73 algèbre

Énoncé exercice 73

Mise à jour : 11/05/15

On pose
$$A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$$
.

- 1. Déterminer les valeurs propres et les vecteurs propres de A.
- 2. Déterminer toutes les matrices qui commutent avec la matrice $\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$. En déduire que l'ensemble des matrices qui commutent avec A est Vect (I_2, A) .

Corrigé exercice 73

1. On obtient le polynôme caractéristique $\chi_A=(X-3)(X+2)$ et donc Sp $A=\{-2,3\}$. Après résolution des équations AX=3X et AX=-2X, on obtient :

$$E_3 = \operatorname{Vect}\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right) \text{ et } E_{-2} = \operatorname{Vect}\left(\begin{pmatrix} 1\\-4 \end{pmatrix}\right)$$

2. Soit $N = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. $ND = DN \iff \begin{cases} -2b & = & 3b \\ 3c & = & -2c \end{cases} \iff b = c = 0 \iff N \text{ diagonale}.$

On a $A = PDP^{-1}$ avec $P = \begin{pmatrix} 1 & 1 \\ 1 & -4 \end{pmatrix}$ et $D = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$.

Soit $M \in \mathcal{M}_2(\mathbb{R})$.

 $AM = MA \stackrel{\frown}{\Leftrightarrow} PDP^{-1}M = MPDP^{-1} \Leftrightarrow D(P^{-1}MP) = (P^{-1}MP)D \Leftrightarrow P^{-1}MP \text{ commute avec } D.$

C'est-à-dire, $AM = MA \Leftrightarrow P^{-1}MP = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \Leftrightarrow M = P \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} P^{-1}.$

Donc, l'espace des matrices commutant avec A est $C(A) = \left\{ P \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} P^{-1}$ avec $(a, d) \in \mathbb{R}^2 \right\}$.

C'est un plan vectoriel.

De plus, pour des raisons d'inclusion $(I_2 \in C(A)$ et $A \in C(A))$ et d'égalité des dimensions, $C(A) = \text{Vect}(I_2, A)$.

Page 99

EXERCICE 74 algèbre

Énoncé exercice 74

- 1. On considère la matrice $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$
- (a) Justifier sans calcul que A est diagonalisable.
- (b) Déterminer les valeurs propres de A puis une base de vecteurs propres associés.
- 2. On considère le système différentiel $\begin{cases} y'=y & , \ x,y,z \text{ désignant trois fonctions de la variable } t, \\ z'=2x+z & \end{cases}$ dérivables sur \mathbb{R} .

Mise à jour : 11/05/15

En utilisant la question 1. et en le justifiant, résoudre ce système.

Corrigé exercice 74

- 1. (a) A est symétrique réelle donc diagonalisable.
- (b) $P_A(X) = \det(X\mathbf{I}_3 A) = \begin{vmatrix} -1 + X & 0 & -2 \\ 0 & -1 + X & 0 \\ -2 & 0 & -1 + X \end{vmatrix}$. En développant par rapport à la première ligne, on obtient, après factorisation : $P_A(X) = (X-1)(X+1)(X-3)$.

$$P_A(X) = (X-1)(X+1)(X-3)$$

On obtient aisément,
$$E_1 = \text{Vect}\begin{pmatrix} 0\\1\\0 \end{pmatrix}$$
, $E_{-1} = \text{Vect}\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ et $E_3 = \text{Vect}\begin{pmatrix} 1\\0\\1 \end{pmatrix}$

On pose $e'_1 = (0, 1, 0), e'_2 = (1, 0, -1)$ et $e'_3 = (1, 0, 1)$.

Alors, $e' = (e'_1, e'_2, e'_3)$ est une base de vecteurs propres pour l'endomorphisme f canoniquement associé

2. Notons (S) le système $\left\{ \begin{array}{l} x'=x+2z\\ y'=y\\ z'=2x+z \end{array} \right. .$

Posons
$$X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

Alors, $(S) \iff X' = AX$.

On note P la matrice de passage de la base canonique e de \mathbb{R}^3 à la base e'.

D'après 1.,
$$P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

D'après 1.,
$$P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
.
Et, si on pose $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, alors $A = PDP^{-1}$.

Donc
$$(S) \iff P^{-1}X' = DP^{-1}X$$
.

On pose alors
$$X_1 = P^{-1}X$$
 et $X_1(t) = \begin{pmatrix} x_1(t) \\ y_1(t) \\ z_1(t) \end{pmatrix}$.

Donc $(S) \iff I - X - DI - X$.

On pose alors $X_1 = P^{-1}X$ et $X_1(t) = \begin{pmatrix} x_1(t) \\ y_1(t) \\ z_1(t) \end{pmatrix}$.

Ainsi, par linéarité de la dérivation, $(S) \iff X_1' = DX_1 \iff \begin{cases} x_1' = x_1 \\ y_1' = -y_1 \\ z_1' = 3z_1 \end{cases}$

On résout alors chacune des trois équations différentielles d'ordre 1 qui constituent ce système.

On trouve
$$\begin{cases} x_1(t) &= a\mathbf{e}^t \\ y_1(t) &= b\mathbf{e}^{-t} \text{ avec } (a,b,c) \in \mathbb{R}^3. \\ z_1(t) &= c\mathbf{e}^{3t} \end{cases}$$

Enfin, on détermine x, y, z en utilisant la relation $X = PX_1$.

On obtient :
$$\begin{cases} x(t) &= b \mathrm{e}^{-t} + c \mathrm{e}^{3t} \\ y(t) &= a \mathrm{e}^{t} & \text{avec } (a,b,c) \in \mathbb{R}^{3}. \\ z(t) &= -b \mathrm{e}^{-t} + c \mathrm{e}^{3t} \end{cases}$$

EXERCICE 75 algèbre

Énoncé exercice 75

On considère la matrice $A = \begin{pmatrix} -1 & -4 \\ 1 & 3 \end{pmatrix}$

- 1. Démontrer que A n'est pas diagonalisable.
- 2. On note f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A. Trouver une base (v_1, v_2) de \mathbb{R}^2 dans laquelle la matrice de f est de la forme $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ On donnera explicitement les valeurs de $a,\,b$ et c.
- 3. En déduire la résolution du système différentiel $\begin{cases} x' = -x 4y \\ y' = x + 3y \end{cases}$

Corrigé exercice 75

- 1. On obtient le polynôme caractéristique $\chi_A(X) = (X-1)^2$, donc $SpA = \{1\}$. Si A était diagonalisable, alors A serait semblable à I_2 , donc égale à I_2 . Ce n'est visiblement pas le cas et donc A n'est pas diagonalisable.
- 2. $\chi_A(X)$ étant scindé, A est trigonalisable. $E_1(A) = \operatorname{Vect}\left(\left(\begin{array}{c} 2 \\ -1 \end{array} \right) \right)$ Pour $v_1 = (2, -1)$ et $v_2 = (-1, 0)$ (choisi de sorte que $f(v_2) = v_2 + v_1$) on obtient une base (v_1, v_2) dans laquelle la matrice de f est $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
- 3. On a $A = PTP^{-1}$ avec $P = \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix}$ Posons $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et $Y = P^{-1}X = \begin{pmatrix} a \\ b \end{pmatrix}$

Le système différentiel étudié équivaut à l'équation X' = AX qui équivaut encore , grâce à la linéarité de la dérivation, à l'équation Y' = TY.

Cela nous amène à résoudre le système $\begin{cases} a'=a+b \\ b'=b \end{cases}$ de solution générale $\begin{cases} a(t)=\lambda e^t+\mu t e^t \\ b(t)=\mu e^t \end{cases}$ Enfin, par la relation X = PY on obtient la solution générale du système initial $x(t) = ((2\lambda - \mu) + 2\mu t) e^{t}$ $y(t) = (-\lambda - \mu t) e^t$

EXERCICE 76 algèbre

Énoncé exercice 76

Mise à jour : 11/05/15

Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire noté (|). On pose $\forall x \in E, ||x|| = \sqrt{(x|x)}$.

- 1. (a) Énoncer et démontrer l'inégalité de Cauchy-Schwarz.
- (b) Dans quel cas a-t-on égalité? Le démontrer.
- 2. Soit $E = \{ f \in \mathcal{C}([a, b], \mathbb{R}), \forall x \in [a, b] \ f(x) > 0 \}.$ Prouver que l'ensemble $\left\{ \int_a^b f(t) dt \times \int_a^b \frac{1}{f(t)} dt, f \in E \right\}$ admet une borne inférieure m et déterminer la valeur de m

Corrigé exercice 76

1. (a) Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire noté (|).

On pose
$$\forall x \in E, ||x|| = \sqrt{(x|x)}$$
.

Inégalité de Cauchy-Schwarz :
$$\forall (x,y) \in E^2, \mid (x|y) \mid \leqslant ||x|| \mid ||y||$$

Soit
$$(x,y) \in E^2$$
. Posons $\forall \lambda \in \mathbb{R}, P(\lambda) = ||x + \lambda y||^2$.

On remarque que
$$\forall \lambda \in \mathbb{R}, P(\lambda) \geq 0$$
.

De plus,
$$P(\lambda) = (x + \lambda y | x + \lambda y)$$
.

Donc, par bilinéarité et symétrie de (|),
$$P(\lambda) = ||y||^2 \lambda^2 + 2\lambda (x|y) + ||x||^2$$

On remarque que
$$P(\lambda)$$
 est un trinôme en λ si et seulement si $||y||^2 \neq 0$.

Premier cas : si y = 0

Alors
$$|(x|y)| = 0$$
 et $||x|| ||y|| = 0$ donc l'inégalité de Cauchy-Schwarz est vérifiée.

Deuxième cas :
$$y \neq 0$$

Alors
$$||y|| = \sqrt{(y|y)} \neq 0$$
 car $y \neq 0$ et (|) est une forme bilinéaire symétrique définie positive.

Donc,
$$P$$
 est un trinôme du second degré en λ qui est positif ou nul.

On en déduit que le discriminant réduit Δ est négatif ou nul.

Or
$$\Delta = (x|y)^2 - ||x||^2 ||y||^2$$
 donc $(x|y)^2 \le ||x||^2 ||y||^2$.

Et donc,
$$|(x|y)| \le ||x|| ||y||$$
.

Prouvons que
$$\forall (x,y) \in E^2$$
, $|(x|y)| = ||x|| ||y|| \iff x \text{ et } y \text{ sont colinéaires.}$

Supposons que
$$|(x|y)| = ||x|| ||y||$$
.

Premier cas : si
$$y = 0$$

Alors
$$x$$
 et y sont colinéaires.

Deuxième cas : si
$$y \neq 0$$

Alors le discriminant de P est nul et donc P admet une racine double
$$\lambda_0$$
.

C'est-à-dire
$$P(\lambda_0) = 0$$
 et comme (|) est définie positive, alors $x + \lambda_0 y = 0$.

Donc
$$x$$
 et y sont colinéaires.

Supposons que x et y soient colinéaires.

Alors
$$\exists \alpha \in \mathbb{R}$$
 tel que $x = \alpha y$ ou $y = \alpha x$.

Supposons par exemple que
$$x = \alpha y$$
 (raisonnement similaire pour l'autre cas).

$$|(x|y)| = |\alpha| \cdot |(y|y)| = |\alpha| \cdot ||y||^2 \text{ et } ||x|| \cdot ||y|| = \sqrt{(x|x)} \cdot ||y|| = \sqrt{\alpha^2(y|y)} ||y|| = |\alpha| \cdot ||y||^2.$$

Donc, on a bien l'égalité.

2. On pose
$$A = \left\{ \int_a^b f(t) dt \times \int_a^b \frac{1}{f(t)} dt , f \in E \right\}$$
.

$$A \subseteq \mathbb{R}$$
.
 $A \neq \emptyset$ car $(b-a)^2 \in A$ (valeur obtenue pour la fonction $t \longmapsto 1$ de

$$A \neq \emptyset$$
 car $(b-a)^2 \in A$ (valeur obtenue pour la fonction $t \longmapsto 1$ de E). De plus, $\forall f \in E, \int_a^b f(t) \mathrm{d}t \times \int_a^b \frac{1}{f(t)} \mathrm{d}t \geqslant 0$ donc A est minorée par 0.

On en déduit que A admet une borne inférieure et on pose $m = \inf A$.

Soit $f \in E$.

On considère la quantité
$$\left(\int_a^b \sqrt{f(t)} \frac{1}{\sqrt{f(t)}} \mathrm{d}t\right)^2$$
.

D'une part,
$$\left(\int_a^b \sqrt{f(t)} \frac{1}{\sqrt{f(t)}} dt\right)^2 = \left(\int_a^b 1 dt\right)^2 = (b-a)^2$$
.

D'autre part, si on utilise l'inégalité de Cauchy-Schwarz pour le produit scalaire usuel sur $\mathcal{C}\left(\left[a,b\right],\mathbb{R}\right)$, on obtient :

Mise à jour : 11/05/15

$$\left(\int_a^b \sqrt{f(t)} \frac{1}{\sqrt{f(t)}} \mathrm{d}t\right)^2 \leqslant \int_a^b f(t) \mathrm{d}t \int_a^b \frac{1}{f(t)} \mathrm{d}t.$$

On en déduit que
$$\forall f \in E$$
, $\int_a^b f(t) dt \int_a^b \frac{1}{f(t)} dt \geqslant (b-a)^2$.

Donc
$$m \ge (b-a)^2$$
.

Et, si on considère la fonction
$$f: t \mapsto 1$$
 de E , alors $\int_a^b f(t) dt \int_a^b \frac{1}{f(t)} dt = (b-a)^2$.

Donc $m = (b - a)^2$.

CC BY-NC-SA 3.0 FR Page 105 CC BY-NC-SA 3.0 FR Page 106

EXERCICE 77 algèbre

Énoncé exercice 77

Soit E un espace euclidien.

- 1. Soit A un sous-espace vectoriel de E. Démontrer que $\left(A^{\perp}\right)^{\perp}=A$.
- 2. Soient F et G deux sous-espaces vectoriels de E.
- (a) Démontrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.
- (b) Démontrer que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Corrigé exercice 77

1. On a
$$A \subset (A^{\perp})^{\perp}$$
 . (*)
En effet, $\forall x \in A, \forall y \in A^{\perp}, (x \mid y) = 0$.
C'est-à-dire, $\forall x \in A, x \in (A^{\perp})^{\perp}$.

Comme E est un espace euclidien, $E=A\oplus A^{\perp}$ donc $\dim A=n-\dim A^{\perp}.$

De même, $E = A^{\perp} \oplus (A^{\perp})^{\perp}$ donc dim $(A^{\perp})^{\perp} = n - \dim A^{\perp}$.

Donc dim
$$(A^{\perp})^{\perp}$$
 = dim A . (**)

D'après (*) et (**),
$$(A^{\perp})^{\perp} = A$$
.

2. (a) Procédons par double inclusion.

Prouvons que
$$F^{\perp} \cap G^{\perp} \subset (F+G)^{\perp}$$
.

Soit
$$x \in F^{\perp} \cap G^{\perp}$$
.

Soit
$$y \in F + G$$
.

Alors
$$\exists (f,g) \in F \times G \text{ tel que } y = f + g.$$

 $(x \mid y) = \underbrace{(x \mid f)}_{} + \underbrace{(x \mid g)}_{} = 0.$

$$=0 =0 car f \in F \text{ et } x \in F^{\perp} car g \in G \text{ et } x \in G^{\perp}$$

Donc
$$\forall y \in (F+G), (x \mid y) = 0.$$

Donc
$$x \in (F + G)^{\perp}$$
.

Prouvons que
$$(F+G)^{\perp} \subset F^{\perp} \cap G^{\perp}$$
.

Soit
$$x \in (F + G)^{\perp}$$
.

$$\forall y \in F$$
, on a $(x \mid y) = 0$ car $y \in F \subset F + G$.

Donc
$$x \in F^{\perp}$$
.

De même, $\forall z \in G$, on a $(x \mid z) = 0$ car $z \in G \subset F + G$.

Donc $x \in G^{\perp}$.

On en déduit que $x \in F^{\perp} \cap G^{\perp}$.

Finalement, par double inclusion, $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.

(b) D'après 2.(a), appliquée à F^{\perp} et à G^{\perp} , on a $(F^{\perp} + G^{\perp})^{\perp} = (F^{\perp})^{\perp} \cap (G^{\perp})^{\perp}$.

Donc, d'après 1.,
$$(F^{\perp} + G^{\perp})^{\perp} = F \cap G$$
.

Donc
$$((F^{\perp} + G^{\perp})^{\perp})^{\perp} = (F \cap G)^{\perp}$$
.

C'est-à-dire, en utilisant 1. à nouveau, $F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$.

Donc, d'après 1.(a), $u \in \mathcal{O}(E)$.

EXERCICE 78 algèbre

Énoncé exercice 78

Soit E un espace euclidien de dimension n et u un endomorphisme de E.

On note (x|y) le produit scalaire de x et de y et ||.|| la norme euclidienne associée.

- 1. Soit u un endomorphisme de E, tel que : $\forall x \in E, ||u(x)|| = ||x||$.
- (a) Démontrer que : $\forall (x,y) \in E^2 (u(x)|u(y)) = (x|y)$.
- (b) Démontrer que u est bijectif.
- 2. Démontrer que l'ensemble $\mathcal{O}(E)$ des isométries vectorielles de E, muni de la loi \circ , est un groupe.
- 3. Soit $u \in \mathcal{L}(E)$. Soit $e = (e_1, e_2, ..., e_n)$ une base orthonormée de E. Prouver que : $u \in \mathcal{O}(E) \iff (u(e_1), u(e_2), ..., u(e_n))$ est une base orthonormée de E.

Corrigé exercice 78

- 1. Soit $u \in \mathcal{L}(E)$ tel que $\forall (x,y) \in E^2$, (u(x)|u(y)) = (x|y).
- (a) Soit $(x,y) \in E^2$. On a, d'une part, $\|u(x+y)\|^2 = \|x+y\|^2 = \|x\|^2 + 2(x\mid y) + \|y\|^2$. (*) D'autre part, $\|u(x+y)\|^2 = \|u(x) + u(y)\|^2 = \|u(x)\|^2 + 2(u(x)\mid u(y)) + \|u(y)\|^2 = \|x\|^2 + 2(u(x)\mid u(y)) + \|y\|^2$. (**) On en déduit, d'après (*) et (**), que $(u(x)\mid u(y)) = (x\mid y)$.

Mise à jour : 11/05/15

(b) Soit $x \in \text{Ker} u$.

Par hypothèse, $0 = ||u(x)||^2 = ||x||^2$.

Donc x = 0.

Donc $Ker u = \{0_E\}.$

Donc u est injectif.

Puisque E est de dimension finie, on peut conclure que l'endomorphisme u est bijectif.

2. Montrons que l'ensemble $\mathcal{O}(E)$ des endomorphismes orthogonaux est un sous-groupe du groupe linéaire $(\mathrm{GL}(E), \circ)$.

On a $\mathcal{O}(E) \subset \mathrm{GL}(E)$ en vertu de ce qui précède.

On a aussi, évidemment, $\mathrm{Id}_E \in \mathcal{O}(E)$. Donc $\mathcal{O}(E) \neq \emptyset$.

Soit $(u, v) \in (\mathcal{O}(E))^2$

 $\forall x \in E, \|u \circ v^{-1}(x)\| = \|u(v^{-1}(x))\| = \|v^{-1}(x)\| \text{ car } u \in \mathcal{O}(E).$

Et $||v^{-1}(x)|| = ||v(v^{-1}(x))|| = ||x||$ car $v \in \mathcal{O}(E)$.

Donc $\forall x \in E, ||u \circ v^{-1}(x)|| = ||x||.$

On en déduit, d'après 1.(a), que $u \circ v^{-1} \in \mathcal{O}(E)$.

3. Soit $u \in \mathcal{L}(E)$. Soit $e = (e_1, e_2, ..., e_n)$ une base orthonormée de E.

Supposons que $u \in \mathcal{O}(E)$.

Soit
$$(i, j) \in ([1, n])^2$$
.

$$u \in \mathcal{O}(E)$$
 donc $(u(e_i)|u(e_j)) = (e_i|e_j)$.

Or e est une base orthonormée de E donc $(u(e_i)|u(e_i)) = \delta_i^j$ où δ_i^j désigne le symbole de Kronecker.

On en déduit que $\forall (i,j) \in (\llbracket 1,n \rrbracket)^2, (u(e_i)|u(e_j)) = \delta_i^j$

C'est-à-dire $(u(e_1), u(e_2), ..., u(e_n))$ est une famille orthonormée de E.

Donc, c'est une famille libre à n éléments de E avec dim E = n.

Donc $(u(e_1), u(e_2), ..., u(e_n))$ est une base orthonormée de E.

Réciproquement, supposons que $(u(e_1),u(e_2),...,u(e_n))$ est une base orthonormée de E.

Comme e est une base orthonormée de E, $x = \sum_{i=1}^{n} x_i e_i$.

$$||x||^2 = \left(\sum_{i=1}^n x_i e_i | \sum_{j=1}^n x_j e_j\right) = \sum_{i=1}^n \sum_{j=1}^n x_i x_j (e_i | e_j).$$

Or e est une base orthonormée de E donc $||x||^2 = \sum_{i=1}^n x_i^2$. (*)

De même, par linéarité de u, $||u(x)||^2 = (\sum_{i=1}^n x_i u(e_i)|\sum_{j=1}^n x_j u(e_j)) = \sum_{i=1}^n \sum_{j=1}^n x_i x_j (u(e_i)|u(e_j))$.

Or $(u(e_1), u(e_2), ..., u(e_n))$ est une base orthonormée de E, donc $||u(x)||^2 = \sum_{i=1}^n x_i^2$. (**)

D'après (*) et (**), $\forall x \in E$, ||u(x)|| = ||x||.

CC BY-NC-SA 3.0 FR Page 107 CC BY-NC-SA 3.0 FR Page 108

EXERCICE 79 algèbre

Énoncé exercice 79

Soit a et b deux réels tels que a < b.

1. Soit h une fonction continue et positive de [a, b] dans \mathbb{R} .

Démontrer que
$$\int_a^b h(x) dx = 0 \Longrightarrow h = 0$$

2. Soit E le \mathbb{R} -espace vectoriel des fonctions continues de [a,b] dans \mathbb{R} .

On pose :
$$\forall$$
 $(f,g) \in E^2$, $(f|g) = \int_a^b f(x)g(x)dx$.
Démontrer que l'on définit ainsi un produit scalaire sur E .

3. Majorer
$$\int_0^1 \sqrt{x}e^{-x} dx$$
 en utilisant l'inégalité de Cauchy-Schwarz.

Corrigé exercice 79

1. Soit h une fonction continue et positive de [a,b] dans $\mathbb R$ telle que $\int^b h(x) \mathrm{d}x = 0$.

On pose
$$\forall x \in [a, b], F(x) = \int_{a}^{x} h(t)dt$$
.

h est continue sur [a,b] donc \tilde{F} est dérivable sur [a,b].

De plus, $\forall x \in [a, b], F'(x) = h(x)$.

Or h est positive sur [a,b] donc F est croissante sur [a,b]. (*)

Or F(a) = 0 et, par hypothèse, F(b) = 0. C'est-à-dire F(a) = F(b). (**)

D'après (*) et (**), F est constante sur [a, b].

Donc $\forall x \in [a, b], F'(x) = 0.$

C'est-à-dire, $\forall x \in [a, b], h(x) = 0.$

2. On pose $\forall (f,g) \in E^2$, $(f|g) = \int_0^b f(x)g(x)dx$.

Par linéarité de l'intégrale, (|) est linéaire par rapport à sa première variable.

Par commutativité du produit sur R, (|) est symétrique.

On en déduit que (|) est une forme bilinéaire symétrique. (*)

Soit
$$f \in E$$
. $(f|f) = \int_a^b f^2(x) dx$.

Or $x \mapsto f^2(x)$ est positive sur [a, b] et a < b donc $(f|f) \ge 0$.

Donc (|) est positive. (**)

Soit $f \in E$ telle que (f|f) = 0.

Alors
$$\int_a^b f^2(x) dx = 0$$
.

Or $x \longmapsto f^2(x)$ est positive et continue sur [a,b].

Donc, d'après 1., f est nulle sur [a, b]

Donc (|) est définie. (***)

D'après (*), (**) et (***), (|) est un produit scalaire sur E.

 $3. \text{ L'inégalité de Cauchy-Schwarz donne} \int_0^1 \sqrt{x} \mathrm{e}^{-x} \, \mathrm{d}x \leqslant \sqrt{\int_0^1 x \, \mathrm{d}x} \sqrt{\int_0^1 \mathrm{e}^{-2x} \, \mathrm{d}x} = \frac{\sqrt{1-\mathrm{e}^{-2}}}{2}.$

EXERCICE 80 algèbre

Énoncé exercice 80

Mise à jour : 11/05/15

Soit E l'espace vectoriel des applications continues et 2π -périodiques de \mathbb{R} dans \mathbb{R} .

1. Démontrer que
$$(f \mid g) = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) g(t) dt$$
 définit un produit scalaire sur E .

Mise à jour : 11/05/15

2. Soit
$$F$$
 le sous-espace vectoriel engendré par $f: x \mapsto \cos x$ et $g: x \mapsto \cos (2x)$

Déterminer le projeté orthogonal sur F de la fonction $u: x \mapsto \sin^2 x$.

Corrigé exercice 80

1. On pose $\forall (f,g) \in E^2$, $(f|g) = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(t)dt$.

Par linéarité de l'intégrale, (|) est linéaire par rapport à sa première variable.

Par commutativité du produit sur \mathbb{R} , (|) est symétrique.

On en déduit que (|) est une forme bilinéaire symétrique. (*)

Soit
$$f \in E$$
. $(f|f) = \frac{1}{2\pi} \int_{0}^{2\pi} f^{2}(t) dt$.

Or $t \mapsto f^2(t)$ est positive sur $[0, 2\pi]$ et $0 < 2\pi$ donc $(f|f) \geqslant 0$.

Donc (|) est positive. (**)

Soit $f \in E$ telle que (f|f) = 0.

Alors
$$\int_{0}^{2\pi} f^{2}(t)dt = 0.$$

Or $t \mapsto f^2(t)$ est positive et continue sur $[0, 2\pi]$.

Donc, f est nulle sur $[0, 2\pi]$.

Or f est 2π -périodique donc f = 0.

Donc (|) est définie. (***)

D'après (*), (**) et (***), (|) est un produit scalaire sur E.

2. On a
$$\forall x \in \mathbb{R}, \sin^2 x = \frac{1}{2} - \frac{1}{2}\cos(2x)$$
.

$$x \longmapsto -\frac{1}{2}\cos(2x) \in F.$$

De plus, si on note
$$h$$
 l'application $x \mapsto \frac{1}{2}$,
$$(h|f) = \frac{1}{4\pi} \int_0^{2\pi} \cos x dx = 0 \text{ et } (h|g) = \frac{1}{4\pi} \int_0^{2\pi} \cos(2x) dx = 0 \text{ donc } h \in F^{\perp} \text{ (car } F = \text{Vect}(f,g)).$$

On en déduit que le projeté orthogonal de u sur F est $x \longmapsto -\frac{1}{2}\cos(2x)$.

EXERCICE 81 algèbre

Énoncé exercice 81

On définit dans $\mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R})$ l'application φ par : $\varphi(A, A') = \operatorname{tr}({}^tAA')$, où $\operatorname{tr}({}^tAA')$ désigne la trace du produit de la matrice ${}^{t}A$ par la matrice A'.

Mise à jour : 11/05/15

On note
$$\mathcal{F} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, (a,b) \in \mathbb{R}^2 \right\}.$$

On admet que φ est un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$

- 1. Démontrer que \mathcal{F} est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- Déterminer une base de F[⊥].
- 3. Déterminer la projection orthogonale de $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur \mathcal{F}^{\perp} .
- 4. Calculer la distance de J à \mathcal{F}

Corrigé exercice 81

1. On a immédiatement $\mathcal{F} = \text{Vect}(I_2, K)$ avec $K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

On peut donc affirmer que \mathcal{F} est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$

 $\mathcal{F} = \text{Vect}(I_2, K)$ donc (I_2, K) est une famille génératrice de \mathcal{F} .

De plus, I_2 et K sont non colinéaires donc la famille (I_2, K) est libre.

On en déduit que (I_2, K) est une base de \mathcal{F} .

2. Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

Comme (I_2, K) est une base de \mathcal{F} ,

$$M \in \mathcal{F}^{\perp} \iff \varphi(M, I_2) = 0 \text{ et } \varphi(M, K) = 0.$$

C'est-à-dire.
$$M \in \mathcal{F}^{\perp} \iff a+d=0 \text{ et } b-c=0.$$

Ou encore,
$$M \in \mathcal{F}^{\perp} \iff d = -a \text{ et } c = b$$
.

On en déduit que
$$\mathcal{F}^{\perp} = \operatorname{Vect}(A, B)$$
 avec $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

(A,B) est une famille libre et génératrice de \mathcal{F}^{\perp} donc (A,B) est une base de \mathcal{F}^{\perp}

3. On peut écrire $J = I_2 + B$ avec $I_2 \in \mathcal{F}$ et $B \in \mathcal{F}^{\perp}$.

Donc le projeté orthogonal de
$$J$$
 sur \mathcal{F}^{\perp} est $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

4. On note $d(J, \mathcal{F})$ la distance de J à \mathcal{F} .

D'après le cours, $d(J, \mathcal{F}) = ||J - p_{\mathcal{F}}(J)||$ où $p_{\mathcal{F}}(J)$ désigne le projeté orthogonal de J sur \mathcal{F} .

On peut écrire à nouveau que $J = I_2 + B$ avec $I_2 \in \mathcal{F}$ et $B \in \mathcal{F}^{\perp}$.

Donc $p_{\mathcal{F}}(J) = I_2$.

On en déduit que $d(J, \mathcal{F}) = ||J - p_{\mathcal{F}}(J)|| = ||J - I_2|| = ||B|| = \sqrt{2}$.

EXERCICE 82 algèbre

Énoncé exercice 82

Soit E un espace préhilbertien et F un sous-espace vectoriel de E de dimension finie n > 0.

On admet que, pour tout $x \in E$, il existe un élément unique y_0 de F tel que $x - y_0$ soit orthogonal à F et que la distance de x à F soit égale à $||x - y_0||$.

Pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, on pose $(A \mid A') = aa' + bb' + cc' + dd'$.

- 1. Démontrer que (.|.) est un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.
- 2. Calculer la distance de la matrice $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ au sous-espace vectoriel F des matrices triangulaires

Corrigé exercice 82

1. On pose $E = \mathcal{M}_2(\mathbb{R})$.

Pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
 et $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in E$, on pose $(A|A') = aa' + bb' + cc' + dd'$.

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
, $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in E$, $B = \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix} \in E$. Soit $\alpha \in \mathbb{R}$.

Solt
$$A = \begin{pmatrix} c & d \end{pmatrix} \in E$$
, $A = \begin{pmatrix} c' & d' \end{pmatrix} \in E$, $B = \begin{pmatrix} c'' & d'' \end{pmatrix} \in E$. Solt $\alpha \in \mathbb{R}$.

$$(A + A'|B) = \begin{pmatrix} \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix} | \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix}) = (a+a')a'' + (b+b')b'' + (c+c')c'' + (d+d')d''.$$

Donc $(A + A'|B) = (aa'' + bb'' + cc'' + dd'') + (a'a'' + b'b'' + c'c'' + d'd'') = (A|B) + (A'|B).$

$$(\alpha A|B) = \begin{pmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{pmatrix} | \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix}) = \alpha aa'' + \alpha bb'' + \alpha cc'' + \alpha dd'' = \alpha (A|B).$$

On an definition of the first constraints and the constraints are similar and the constraints are similar and the constraints.

$$(\alpha A|B) = \begin{pmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{pmatrix} | \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix} \rangle = \alpha a a'' + \alpha b b'' + \alpha c c'' + \alpha d d'' = \alpha (A|B)$$

On en déduit que (. | .) est linéaire par rapport à sa première variable.

De plus, par commutativité du produit sur \mathbb{R} , (.|.) est symétrique.

Donc (.|.) est une forme bilinéaire et symétrique. (*)

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
. $(A|A) = a^2 + b^2 + c^2 + d^2 \geqslant 0$. Donc $(. \mid .)$ est positive. (**)

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
 telle que $(A|A) = 0$.

Alors
$$a^2 + b^2 + c^2 + d^2 = 0$$
.

Comme il s'agit d'une somme de termes tous positifs, on en déduit que a=b=c=d=0 donc A=0. Donc (.|.) est définie. (***)

D'après (*), (**) et (***), (.|.) est un produit scalaire sur E.

$$2. \ A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}.$$

On a
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$
.

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \in F \text{ et } \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \in F^{\perp} \text{ car } \forall (a,b,d) \in \mathbb{R}^3, \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} | \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \end{pmatrix} = 0.$$

On en déduit que le projeté orthogonal, noté $p_F(A)$, de A sur F est la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

Ainsi,
$$d(A, F) = ||A - p_F(A)|| = ||\begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}|| = 1.$$

Exercice 83 algèbre

Énoncé exercice 83

Soit u et v deux endomorphismes d'un espace vectoriel E.

1. Soit λ un réel non nul. Prouver que si λ est valeur propre de $u \circ v$, alors λ est valeur propre de $v \circ u$.

Mise à jour : 11/05/15

- 2. On considère, sur $E = \mathbb{R}[X]$ les endomorphismes u et v définis par $u: P \longmapsto \int_{-\infty}^{\infty} P$ et $v: P \longmapsto P'$. Déterminer $\operatorname{Ker}(u \circ v)$ et $\operatorname{Ker}(v \circ u)$. Le résultat de la question 1. reste-t-il vrai pour $\lambda = 0$?
- 3. Si E est de dimension finie, démontrer que le résultat de la première question reste vrai pour $\lambda = 0$. On pourra utiliser, sans démonstration, que 0 est valeur propre d'un endomorphisme w de E (espace de dimension finie) si et seulement si $\det w = 0$.

Corrigé exercice 83

- 1. Soit $\lambda \neq 0$.
- Si λ valeur propre de $u \circ v$ alors $\exists x \in E \setminus \{0\} / (u \circ v)(x) = \lambda x$. (*)
- On a alors $v(u \circ v(x)) = \lambda v(x)$ c'est-à-dire $(v \circ u)(v(x)) = \lambda v(x)$ (**).
- Si v(x) = 0 alors, d'après (*), $\lambda x = 0$. Ce qui est impossible car $x \neq 0$ et $\lambda \neq 0$.
- Donc, d'après (**), v(x) est un vecteur propre de $v \circ u$ associé à la valeur propre λ .
- 2. On trouve que $v \circ u = \text{Id}$ et $u \circ v : P \longmapsto P(X) P(1)$.
 - Ainsi $Ker(v \circ u) = \{0\}$ et $Ker(u \circ v) = \mathbb{R}_0 [X]$.
 - On observe que 0 est valeur propre de $u \circ v$ mais n'est pas valeur propre de $v \circ u$.
 - On constate donc que le résultat de la question 1. est faux pour $\lambda = 0$.
- 3. Si E est de dimension finie, comme $\det(u \circ v) = \det u \det v = \det(v \circ u)$ alors : 0 est valeur propre de $u \circ v \iff \det(u \circ v) = 0 \iff \det(v \circ u) = 0 \iff 0$ est valeur propre de $v \circ u$.
 - Remarque 1 : le résultat de la question 1. est vrai pour $\lambda = 0$ si et seulement si E est de dimension finie.
- **Remarque 2**: Si E est de dimension finie, $u \circ v$ et $v \circ u$ ont les mêmes valeurs propres.

EXERCICE 84 algèbre

Énoncé exercice 84

- 1. Donner la définition d'un argument d'un nombre complexe non nul (on ne demande ni l'interprétation géométrique, ni la démonstration de l'existence d'un tel nombre).
- 2. Soit $n \in \mathbb{N}^*$. Donner, en justifiant, les solutions dans \mathbb{C} de l'équation $z^n = 1$ et préciser leur nombre.
- 3. En déduire, pour $n \in \mathbb{N}^*$, les solutions dans \mathbb{C} de l'équation $(z+i)^n = (z-i)^n$ et démontrer que ce sont des nombres réels.

Corrigé exercice 84

- 1. Soit z un complexe non nul. Posons z = x + iy avec x et y réels. Un argument de z est un réel θ tel que $\frac{z}{|z|} = e^{\mathrm{i}\theta}$ avec $|z| = \sqrt{x^2 + y^2}$.
- 2. Soit $z = re^{i\theta}$ avec r > 0 et $\theta \in \mathbb{R}$.

On a
$$z^n = 1 \iff \left\{ \begin{array}{c} r^n = 1 \\ \text{et} \\ n\theta = 0 \mod 2\pi \end{array} \right. \iff \left\{ \begin{array}{c} r = 1 \\ \text{et} \\ \theta = \frac{2k\pi}{n} \text{ avec } k \in \mathbb{Z} \end{array} \right.$$

Les réels $\frac{2k\pi}{n}$, pour $k \in [0, n-1]$, sont deux à deux distincts et $\forall k \in [0, n-1]$, $\frac{2k\pi}{n} \in [0, 2\pi[$.

Or
$$\theta \mapsto \mathbb{C}$$
 est injective.

 $\text{Donc, } \left\{ \mathrm{e}^{\frac{\mathrm{i} 2k\pi}{n}} \text{ avec } k \in [\![0,n-1]\!] \right\} \text{ est constitu\'e de } n \text{ solutions distinctes de l'équation } z^n = 1.$

Les solutions de l'équation $z^n=1$ étant également racines du polynôme X^n-1 , il ne peut y en avoir

Finalement, l'ensemble des solutions de l'équation $z^n=1$ est $S=\left\{e^{\frac{i2k\pi}{n}} \text{ avec } k \in [0,n-1]\right\}$

3. z=i n'étant pas solution de l'équation $(z+i)^n=(z-i)^n$,

$$(z+\mathrm{i})^n = (z-\mathrm{i})^n \iff \left(\frac{z+\mathrm{i}}{z-\mathrm{i}}\right)^n = 1$$

$$\iff \exists \, k \in [\![0,n-1]\!] \, \mathrm{tel} \, \mathrm{que} \, \frac{z+\mathrm{i}}{z-\mathrm{i}} = \mathrm{e}^{\frac{\mathrm{i}2k\pi}{n}}$$

$$\iff \ \exists \ k \in [\![0,n-1]\!] \ \mathrm{tel} \ \mathrm{que} \ z \left(1-\mathrm{e}^{\frac{\mathrm{i} 2k\pi}{n}}\right) = -\mathrm{i} \left(1+\mathrm{e}^{\frac{\mathrm{i} 2k\pi}{n}}\right)$$

En remarquant que $z\left(1-\mathrm{e}^{\frac{\mathrm{i}2k\pi}{n}}\right)=-\mathrm{i}\left(1+\mathrm{e}^{\frac{\mathrm{i}2k\pi}{n}}\right)$ n'admet pas de solution pour k=0, on en déduit que :

$$(z+\mathrm{i})^n = (z-\mathrm{i})^n \iff \exists k \in \llbracket 1, n-1 \rrbracket \text{ tel que } z = \mathrm{i} \operatorname{e}^{\frac{\mathrm{i} 2kn}{n}} + \frac{1}{\mathrm{e}^{\frac{\mathrm{i} 2kn}{n}} - 1}$$

En écrivant i $e^{\frac{i2k\pi}{n}} + 1 = i \frac{e^{\frac{ik\pi}{n}} - ik\pi}{e^{\frac{ik\pi}{n}} - ik\pi} = i \frac{e^{\frac{ik\pi}{n}} - ik\pi}{e^{\frac{ik\pi}{n}} - ik\pi} = i \frac{2\cos\left(\frac{k\pi}{n}\right)}{2i\sin\left(\frac{k\pi}{n}\right)} = \frac{1}{\tan(\frac{k\pi}{n})}$, on voit que les solutions sont des

réels.

On pouvait aussi voir que si z est solution de l'équation $(z+i)^n = (z-i)^n$ alors |z+i| = |z-i| et donc le point d'affixe z appartient à la médiatrice de [A, B], A et B étant les points d'affixes respectives i et -i, c'est-à-dire à la droite des réels.

Mise à jour : 11/05/15

EXERCICE 85 algèbre

Énoncé exercice 85

- 1. Soient $n \in \mathbb{N}^*$, $P \in \mathbb{R}_n[X]$ et $a \in \mathbb{R}$.
- (a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P(X) dans la base $\left(1, X-a, (X-a)^2, \cdots, (X-a)^n\right)$.
- (b) Soit $r \in \mathbb{N}^*$. En déduire que : a est une racine de P d'ordre de multiplicité r si et seulement si $P^{(r)}(a) \neq 0$ et $\forall k \in \llbracket 0, r-1 \rrbracket$, $P^{(k)}(a) = 0$.
- 2. Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P = X^5 + aX^2 + bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.

Corrigé exercice 85

1.
$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k}$$
.

2.

$$\begin{array}{lll} a \text{ est une racine d'ordre } r \text{ de } P &\iff & \exists Q \in \mathbb{R}_{n-r}[X] \text{ tel que } Q\left(a\right) \neq 0 \text{ et } P = \left(X-a\right)^r Q \\ &\iff & \exists \left(q_0,\dots,q_{n-r}\right) \in \mathbb{R}^{n-r+1} \text{ tel que } q_0 \neq 0 \text{ et } P = \left(X-a\right)^r \sum_{i=0}^{n-r} q_i \left(X-a\right)^i \\ &\iff & \exists \left(q_0,\dots,q_{n-r}\right) \in \mathbb{R}^{n-r+1} \text{ tel que } q_0 \neq 0 \text{ et } P = \sum_{i=0}^{n-r} q_i \left(X-a\right)^{r+i} \\ &\iff & \exists \left(q_0,\dots,q_{n-r}\right) \in \mathbb{R}^{n-r+1} \text{ tel que } q_0 \neq 0 \text{ et } P = \sum_{i=0}^{n} q_{k-r} \left(X-a\right)^k \end{array}$$

D'après la formule de Taylor (rappelée ci-dessus) et l'unicité de la décomposition de P dans la base $(1,(X-a),\ldots,(X-a)^n)$ de $\mathbb{R}_n[X]$ il vient enfin :

$$a$$
 est une racine d'ordre r de $P \iff \forall k \in \{0, \dots, r-1\}$ $P^{(k)}(a) = 0$ et $P^{(r)}(a) \neq 0$

3. D'après la question précédente,

1 est racine double de
$$P = X^5 + aX^2 + bX$$
 \iff $P(1) = P'(1) = 0$ et $P''(1) \neq 0$
$$\iff \begin{cases} 1 + a + b = 0 \\ 5 + 2a + b = 0 \\ 20 + 2a \neq 0 \end{cases}$$

$$\iff a = -4 \text{ et } b = 3$$

On obtient $X^5 - 4X^2 + 3X = X(X-1)^2(X^2 + 2X + 3)$ et c'est la factorisation cherchée car le discriminant de $X^2 + 2X + 3$ est strictement négatif.

EXERCICE 86 algèbre

Énoncé Exercice 86

Soit p un nombre premier.

- 1. (a) Soit $(a,b) \in \mathbb{Z}^2$. Prouver que : si $p \wedge a = 1$ et $p \wedge b = 1$, alors $p \wedge (ab) = 1$.
- (b) Prouver que $\forall k \in [1, p-1], p$ divise $\binom{p}{k}k!$ puis en déduire que p divise $\binom{p}{k}$.
- 2. (a) Prouver que : $\forall n \in \mathbb{N}, \ n^p \equiv n \mod p$.

Indication : procéder par récurrence.

(b) En déduire que : $\forall n \in \mathbb{N}, p$ ne divise pas $n \Longrightarrow n^{p-1} \equiv 1 \mod p$.

Corrigé exercice 86

1. (a) D'après le théorème de Bézout,

 $\exists (u_1, v_1) \in \mathbb{Z}^2 \text{ tel que } u_1 p + v_1 a = 1.$ (1)

 $\exists (u_2, v_2) \in \mathbb{Z}^2 \text{ tel que } u_2 p + v_2 b = 1.$ (2)

En multipliant les équations (1) et (2), on obtient $(u_1u_2p + u_1v_2b + u_2v_1a)p + (v_1v_2)(ab) = 1$. Donc, d'après le théorème de Bézout, $p \land (ab) = 1$.

(b)
$$\begin{pmatrix} p \\ k \end{pmatrix} = \frac{p!}{k!(p-k)!} = \frac{p(p-1)...(p-k+1)}{k!}$$

Donc
$$\binom{p}{k} k! = p(p-1)...(p-k+1).$$

donc
$$p \mid \binom{p}{k} k!$$
. (3)

Or, $\forall k \in \llbracket 1, p-1 \rrbracket$, $p \wedge k = 1$ (car p est premier) donc, d'après 1.(a), $p \wedge k! = 1$.

Donc, d'après le lemme de Gauss, $(3) \Longrightarrow p \mid \binom{p}{k}$

2. (a) Procédons par récurrence sur n.

Pour n=0 et pour n=1, la propriété est vérifiée.

Supposons que la propriété $(P_n): n^p \equiv n \mod p$ soit vérifiée au rang n.

Alors, d'après la formule du binôme de Newton, $(n+1)^p = n^p + \sum_{k=1}^{p-1} \binom{p}{k} n^k + 1$. (4)

Or,
$$\forall k \in [1, p-1], p \mid \binom{p}{k} \text{ donc } p \mid \sum_{k=1}^{p-1} \binom{p}{k} n^k$$
.

Donc d'après (4) et (P_n) , $(n+1)^p \equiv n+1 \mod p$ et (P_{n+1}) est vraie.

(b) Soit $n \in \mathbb{N}$ tel que p ne divise pas n.

Comme p est premier, alors $p \wedge n = 1$.

La question précédente donne p divise $n^p - n = n(n^{p-1} - 1)$.

Or comme p est premier avec n, on en déduit, d'après le lemme de Gauss, que p divise $n^{p-1}-1$.

CC BY-NC-SA 3.0 FR

Ce qui signifie que $n^{p-1} \equiv 1 \mod p$.

Mise à jour : 11/05/15

EXERCICE 87 algèbre

Énoncé exercice 87

Soient a_0,a_1,\cdots,a_n , $\,n+1$ réels deux à deux distincts.

1. Montrer que si b_0, b_1, \dots, b_n sont n+1 réels quelconques, alors il existe un unique polynôme P vérifiant

$$\deg P \leqslant n \text{ et } \forall i \in \{0, \cdots, n\} \ P(a_i) = b_i.$$

2. Soit $k \in [0, ..., n]$.

Expliciter ce polynôme P, que l'on notera L_k , lorsque :

$$\forall i \in [0,\dots,n], \quad b_i = \left\{ \begin{array}{ll} 0 & \mathrm{si} & i \neq k \\ 1 & \mathrm{si} & i = k \end{array} \right.$$

3. Prouver que $\forall p \in \llbracket 0, \dots, n \rrbracket$, $\sum_{k=1}^{n} a_k^p L_k = X^p$.

Corrigé exercice 87

1. L'application $u: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$ $\mapsto (P(a_0), P(a_1), \dots, P(a_n))$ est linéaire.

Si $P \in \text{Ker}u$, alors $P(a_0) = P(a_1) = \cdots = P(a_n) = 0$ et le polynôme P, de degré inférieur ou égal à n, admet n+1 racines distinctes.

Donc P = 0.

Ainsi u est injective et comme dim $\mathbb{R}_n[X] = n+1 = \dim \mathbb{R}^{n+1}$, u est un isomorphisme d'espaces vectoriels. Enfin les conditions recherchées sont équivalentes à : $P \in \mathbb{R}_n[X]$ et $u(P) = (b_0, \dots, b_n)$

La bijectivité de u dit que ce problème admet une unique solution P et on a $P = u^{-1}((b_0, \ldots, b_n))$.

2. Pour ce choix de b_0, b_1, \dots, b_n le polynôme L_k vérifie les conditions :

$$\deg L_k \leqslant n \text{ et } \forall i \in [0, n], \ L_k(a_i) = \begin{cases} 0 & \text{si} \quad i \neq k \\ 1 & \text{si} \quad i = k \end{cases}$$

Comme $a_0, \ldots, a_{k-1}, a_{k+1}, \ldots, a_n$ sont n racines distinctes de L_k qui est de degré $\leq n$, il existe nécessairement $\lambda \in \mathbb{K}$ tel que

$$L_k = \lambda \prod_{\substack{i=0\\i\neq k}}^n (X - a_i)$$

La condition supplémentaire $L_k\left(a_k\right)=1$ donne $\lambda=\frac{1}{\prod\left(a_k-a_i\right)}$ et finalement :

$$L_k = \prod_{i=0}^n \frac{X - a_i}{a_k - a_i}$$

3. Soit $p \in [0, ..., n]$.

Les polynômes $\sum_{k=0}^{n} a_k^p L_k$ et X^p vérifient les mêmes conditions d'interpolation :

$$\deg P \leqslant n \text{ et } \forall i \in \{0, \cdots, n\} \ P(a_i) = a_i^p$$

Par l'unicité vue en première question, on a $\sum_{k=0}^{\infty} a_k^p L_k = X^p$.

EXERCICE 88 algèbre

Énoncé exercice 88

Soit $(a,b) \in \mathbb{R}^2$ et soit $n \in \mathbb{N}^*$. Soit le polynôme $P = aX^{n+1} + bX^n + 1$.

- 1. Déterminer a et b pour que 1 soit racine d'ordre au moins 2 de P.
- 2. Dans ce cas, vérifier que le quotient de la division euclidienne de P par $(X-1)^2$ est $\sum_{k=1}^{N-1} (k+1)X^k$.

Corrigé exercice 88

1. Pour que 1 soit racine d'ordre au moins 2 de P, il faut et il suffit que P(1) = P'(1) = 0.

1. Pour que 1 soit racine d'ordre au moins 2 de
$$P$$
, il faut et il suffit qu
Cela équivaut au système
$$\begin{cases} a+b+1=0\\ (n+1)\,a+nb=0 \end{cases}$$

$$\operatorname{Or} \begin{cases} a+b+1=0\\ (n+1)a+nb=0 \end{cases} \iff \begin{cases} a+b=-1\\ -n+a=0 \end{cases} \iff \begin{cases} a=n\\ b=-n-1 \end{cases}$$
Donc $P=n\,X^{n+1}-(n+1)\,X^n+1$.

2. Vérifions que le quotient de la division euclidienne de P par $(X-1)^2$ est $Q = \sum_{k=1}^{n-1} (k+1) X^k$.

$$\begin{split} (X^2-2X+1)\times Q &= \sum_{k=0}^{n-1}(k+1)X^{k+2}-2\sum_{k=0}^{n-1}(k+1)X^{k+1}+\sum_{k=0}^{n-1}(k+1)X^k\\ &= \sum_{n=1}^{k-2}(k-1)\,X^k-2\sum_{k=1}^nkX^k+\sum_{k=0}^{n-1}(k+1)\,X^k\\ &= \sum_{k=2}^{n-1}(k-1)X^k+(n-1)X^n+nX^{n+1}-2\sum_{k=2}^{n-1}kX^k-2X-2nX^n\\ &+\sum_{k=2}^{n-1}(k+1)X^k+1+2X\\ &= \sum_{n=1}^{n-1}\left((k-1)-2k+(k+1)\right)X^k+nX^{n+1}-(n+1)X^n+1\\ &= nX^{n+1}-(n+1)X^n+1 \end{split}$$

On vient d'établir que $(X^2 - 2X + 1) \times Q = P$.

Donc le quotient de
$$P$$
 par $(X-1)^2$ est $\sum_{k=0}^{n-1} (k+1) X^k$.

EXERCICE 89 algèbre

Énoncé exercice 89

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On pose $z = e^{i\frac{2\pi}{n}}$.

1. On suppose $k \in [1, n-1]$.

Déterminer le module et un argument du complexe $z^k - 1$.

2. On pose $S = \sum_{k=0}^{n-1} |z^k - 1|$. Montrer que $S = \frac{2}{\tan \frac{\pi}{\sigma_n}}$.

Corrigé exercice 89

1.
$$z^k - 1 = e^{i\frac{k2\pi}{n}} - 1 = e^{i\frac{k\pi}{n}} \left(e^{i\frac{k\pi}{n}} - e^{-i\frac{k\pi}{n}} \right) = e^{i\frac{k\pi}{n}} 2i\sin\left(\frac{k\pi}{n}\right)$$

c'est-à-dire
$$z^k - 1 = 2\sin\left(\frac{k\pi}{n}\right) e^{i\left(\frac{k\pi}{n} + \frac{\pi}{2}\right)}$$

Pour
$$k \in [1, n-1]$$
, on a $0 < \frac{k\pi}{n} < \pi$, donc $\sin\left(\frac{k\pi}{n}\right) > 0$.

Donc le module de $z^k - 1$ est $2 \sin\left(\frac{k\pi}{n}\right)$ et un argument de $z^k - 1$ est $\frac{k\pi}{n} + \frac{\pi}{2}$.

2. On remarque que pour $k=0, |z^k-1|=0$ et $\sin\left(\frac{k\pi}{z}\right)=0$.

Donc d'après la question précédente, on a S=2 $\sum_{k=0}^{n-1} \sin\left(\frac{k\pi}{n}\right)$

S est donc la partie imaginaire de $T=2\sum_{i=1}^{n-1}e^{i\frac{k\pi}{n}}$.

Or, comme
$$e^{i\frac{\pi}{n}} \neq 1$$
, on a $T = 2\frac{1 - e^{i\pi}}{\frac{\pi}{1 - e^{i\pi}}} = \frac{4}{\frac{\pi}{1 - e^{i\pi}}}$.

Or
$$1 - e^{i\frac{\pi}{n}} = e^{i\frac{\pi}{2n}} \left(e^{-i\frac{\pi}{2n}} - e^{i\frac{\pi}{2n}} \right) = -2ie^{i\frac{\pi}{2n}} \sin\left(\frac{\pi}{2n}\right)$$

On en déduit que
$$T = \frac{4e^{-i\frac{n}{2n}}}{-2i\sin\frac{\pi}{2n}} = \frac{2}{\sin\frac{\pi}{2n}}$$
 i $e^{-i\frac{\pi}{2n}}$.

En isolant la partie imaginaire de T, et comme $\cos\left(\frac{\pi}{2n}\right) \neq 0 \ (n \geqslant 2)$, on en déduit que $S = \frac{2}{\tan\frac{\pi}{n}}$.

EXERCICE 90 algèbre

Énoncé exercice 90

Mise à jour : 11/05/15

K désigne le corps des réels ou celui des complexes. Soient a_1, a_2, a_3 trois scalaires distincts donnés de \mathbb{K} .

- 1. Montrer que $\Phi: \mathbb{K}_2[X] \longrightarrow \mathbb{K}^3$ $P \longmapsto (P(a_1), P(a_2), P(a_3))$ est un isomorphisme d'espaces vectoriels
- 2. On note (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et on pose $\forall k \in \{1, 2, 3\}, L_k = \Phi^{-1}(e_k)$
- (a) Justifier que (L₁, L₂, L₃) est une base de K₂[X].
- (b) Exprimer les polynômes L_1, L_2 et L_3 en fonction de a_1, a_2 et a_3 .
- 3. Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .
- 4. **Application** : on se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3), C(2,1).

Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

Corrigé exercice 90

1. Par linéarité de l'évaluation $P \mapsto P(a)$ (où a est un scalaire fixé), Φ est linéaire.

Soit $P \in \mathbb{K}_2[X]$ tel que $\Phi(P) = 0$.

Alors $P(a_1) = P(a_2) = P(a_3) = 0$, donc P admet trois racines distinctes.

Or P est de degré inférieur ou égal à 2 ; donc P est nul.

Ainsi, $Ker(\Phi) = \{0\}$ i.e. Φ est injective.

Enfin, dim $(\mathbb{K}_2[X])$ = dim (\mathbb{K}^3) = 3 donc Φ est bijective.

Par conséquent, Φ est un isomorphisme d'espaces vectoriels de $\mathbb{K}_2[X]$ dans \mathbb{K}^3 .

- 2. (a) Φ est un isomorphisme donc l'image réciproque d'une base est une base. Ainsi, (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
- (b) $L_1 \in \mathbb{R}_2[X]$ et vérifie $\Phi(L_1) = (1,0,0)$ i.e. $(L_1(a_1), L_1(a_2), L_1(a_3)) = (1,0,0)$.

Donc, comme a_2 et a_3 sont distincts, $(X - a_2)(X - a_3) | L_1$.

Or deg $L_1 \leq 2$, donc $\exists k \in \mathbb{K}$ tel que $L_1 = k(X - a_2)(X - a_3)$

La valeur
$$L_1(a_1) = 1$$
 donne $k = \frac{1}{(a_1 - a_2)(a_1 - a_3)}$.
Donc $L_1 = \frac{(X - a_2)(X - a_3)}{(a_1 - a_2)(a_1 - a_3)}$.

Donc
$$L_1 = \frac{(X - a_2)(X - a_3)}{(a_1 - a_2)(a_1 - a_3)}$$
.

Un raisonnement analogue donne $L_2 = \frac{(X - a_1)(X - a_3)}{(a_2 - a_1)(a_2 - a_3)}$ et $L_3 = \frac{(X - a_1)(X - a_2)}{(a_3 - a_1)(a_3 - a_3)}$

- 3. (L_1, L_2, L_3) base de $\mathbb{K}_2[X]$ donc $\exists (\lambda_1, \lambda_2, \lambda_3) \in \mathbb{K}^3$ tel que $P = \lambda_1 L_1 + \lambda_2 L_2 + \lambda_3 L_3$. Par construction, $\forall (i,j) \in \{1,2,3\}^2, L_i(a_j) = \delta_{ij} \text{ donc } P(a_j) = \lambda_j$ Ainsi, $P = P(a_1)L_1 + P(a_2)L_2 + P(a_3)L_3$.
- 4. On pose $a_1 = 0$, $a_2 = 1$ et $a_3 = 2$. Ces trois réels sont bien distincts.

On cherche $P \in \mathbb{R}_2[X]$ tel que $(P(a_1), P(a_2), P(a_3)) = (1, 3, 1)$.

Par bijectivité de
$$\Phi$$
 et d'après 3 ., l'unique solution est le polynôme $P=1.L_1+3.L_2+1.L_3$. On a $L_1=\frac{(X-1)(X-2)}{2},\ L_2=\frac{X(X-2)}{-1}$ et $L_3=\frac{X(X-1)}{2}$. Donc $P=-2X^2+4X+1$.

CC BY-NC-SA 3.0 FR Page 119 CC BY-NC-SA 3.0 FR Page 120

Mise à jour : 11/05/15

EXERCICE 91 algèbre

Énoncé exercice 91

On considère la matrice $A = \begin{pmatrix} 0 & 2 & -1 \\ -1 & 3 & -1 \\ -1 & 2 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$

- 1. Montrer que A n'admet qu'une seule valeur propre que l'on déterminera.
- 2. La matrice A est-elle inversible? Est-elle diagonalisable?
- 3. Déterminer, en justifiant, le polynôme minimal de A.
- 4. Soit $n \in \mathbb{N}$. Déterminer le reste de la division euclidienne de X^n par $(X-1)^2$ et en déduire la valeur de A^n .

Corrigé exercice 91

1. Déterminons le polynôme caractéristique χ_A de A:

$$\chi_A(X) = \begin{vmatrix} X & -2 & 1 \\ 1 & X - 3 & 1 \\ 1 & -2 & X \end{vmatrix} = \begin{vmatrix} X - 1 & -2 & 1 \\ X - 1 & X - 3 & 1 \\ X - 1 & -2 & X \end{vmatrix}$$

$$= (X - 1) \begin{vmatrix} 1 & -2 & 1 \\ 1 & X - 3 & 1 \\ 1 & -2 & X \end{vmatrix} = (X - 1) \begin{vmatrix} 1 & -2 & 1 \\ 1 & X - 3 & 1 \\ 1 & -2 & X \end{vmatrix} = (X - 1) \begin{vmatrix} 1 & -2 & 1 \\ 0 & X - 1 & 0 \\ 0 & 0 & X - 1 \end{vmatrix}$$

$$= (X - 1)^3$$

Donc $\chi_A(X) = (X - 1)^3$.

Donc A admet 1 comme unique valeur propre.

- 2. Puisque 0 n'est pas valeur propre de A, A est inversible. Si A était diagonalisable elle serait semblable à la matrice identité et donc égale à la matrice identité. Puisque ce n'est pas le cas, A n'est pas diagonalisable.
- 3. Notons P_m le polynôme minimal de A. P_m divise χ_A et P_m est un polynôme annulateur de A.

$$A - I_3 \neq 0 \text{ et } (A - I_3)^2 = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{pmatrix} \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

4. Soit $n \in \mathbb{N}$. Par division euclidienne de X^n par $(X-1)^2$, $\exists ! (Q, R) \in \mathbb{R}[X] \times \mathbb{R}_1[X], X^n = (X - 1)^2 Q + R$ (1)

Or, $\exists (a, b) \in \mathbb{R}^2$, R = aX + b donc $X^n = (X - 1)^2 Q + aX + b$.

Puisque 1 est racine double de $(X-1)^2$ on obtient : 1=a+b et, après dérivation, n=a.

Donc R = nX + 1 - n. (2)

 $P_m = (X-1)^2$ étant un polynôme annulateur de A on a d'après (1) et (2) :

$$\forall n \in \mathbb{N}, A^n = nA + (1-n)I_3$$

EXERCICE 92 algèbre

Énoncé exercice 92

Soit $n \in \mathbb{N}^*$. On considère $E = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n.

On pose : $\forall (A, B) \in E^2$, $\langle A, B \rangle = \operatorname{tr}(^tAB)$ où tr désigne la trace et tA désigne la transposée de la matrice A.

- 1. Prouver que \langle , \rangle est un produit scalaire sur E.
- 2. On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques de E et $A_n(\mathbb{R})$ l'ensemble des matrices antisymétriques
- (a) Prouver que $E = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$.
- (b) Prouver que $S_n(\mathbb{R}) = A_n(\mathbb{R})^{\perp}$.
- 3. Soit F l'ensemble des matrices diagonales de EDéterminer F^{\perp} .

Corrigé exercice 92

1. \langle , \rangle est linéaire par rapport à sa première variable par linéarité de la trace, de la transposition et par distributivité de la multiplication par rapport à l'addition dans E.

De plus, une matrice et sa transposée avant la même trace, on a :

 $\forall (A, B) \in E^2, \langle A, B \rangle = \operatorname{tr}({}^t A B) = \operatorname{tr}({}^t ({}^t A B)) = \operatorname{tr}({}^t B A) = \langle B, A \rangle.$

Donc (,) est symétrique.

On en déduit que (,) est bilinéaire et symétrique. (1)

Soit
$$A = (A_{i,j})_{1 \leq i \leq j} \in E$$
.

$$\langle A , A \rangle = \operatorname{tr}({}^t\!AA) = \sum_{i=1}^n ({}^t\!AA)_{i,i} = \sum_{i=1}^n \sum_{k=1}^n ({}^t\!A)_{i,k} A_{k,i} = \sum_{i=1}^n \sum_{k=1}^n A_{k,i}^2 \operatorname{donc} \langle A , A \rangle \geqslant 0.$$
 Donc \langle , \rangle est positive. (2)

Soit $A = (A_{i,j})_{1 \le i \le n} \in E$ telle que $\langle A, A \rangle = 0$.

Alors
$$\sum_{i=1}^{n} \sum_{k=1}^{n} A_{k,i}^2 = 0$$
. Or, $\forall i \in [\![1,n]\!], \ \forall k \in [\![1,n]\!], \ A_{k,i}^2 \geqslant 0$.

Donc $\forall i \in [1, n], \forall k \in [1, n], A_{k,i} = 0$. Donc A = 0.

Donc (,) est définie. (3)

D'après (1),(2) et (3), \langle , \rangle est un produit scalaire sur E.

Remarque importante : Soit $(A, B) \in E^2$.

On pose
$$A = (A_{i,j})_{1 \le i \le n}$$
 et $B = (B_{i,j})_{1 \le i \le n}$.

Alors
$$\langle A, B \rangle = \operatorname{tr}({}^tAB) = \sum_{i=1}^n ({}^tAB)_{i,i} = \sum_{i=1}^n \sum_{k=1}^{n-1} ({}^tA)_{i,k} B_{k,i} = \sum_{i=1}^n \sum_{k=1}^n A_{k,i} B_{k,i}$$
.

Donc \langle , \rangle est le produit scalaire canonique sur E

2. (a) Soit $M \in S_n(\mathbb{R}) \cap A_n(\mathbb{R})$.

alors ${}^{t}M = M$ et ${}^{t}M = -M$ donc M = -M et M = 0.

Donc $S_n(\mathbb{R}) \cap A_n(\mathbb{R}) = \{0\}.$ (1)

From Some
$$M \in E$$
. And $M = M + tM$ of $M = M$

On en déduit que $E = S_n(\mathbb{R}) + A_n(\mathbb{R})$. (2)

Remarque : on pouvait également procéder par analyse et synthèse pour prouver que $E = S_n(\mathbb{R}) \oplus A_n(\mathbb{R}).$

(b) Prouvons que $S_n(\mathbb{R}) \subset A_n(\mathbb{R})^{\perp}$.

Soit
$$S \in S_n(\mathbb{R})$$
.

Prouvons que
$$\forall A \in A_n(\mathbb{R}), \langle S, A \rangle = 0.$$

Soit
$$A \in A_n(\mathbb{R})$$
.

$$\langle S, A \rangle = \operatorname{tr}({}^t\!SA) = \operatorname{tr}(SA) = \operatorname{tr}(AS) = \operatorname{tr}(-{}^t\!AS) = -\operatorname{tr}({}^t\!AS) = -\langle A, S \rangle = -\langle S, A \rangle.$$

Donc
$$2\langle S, A \rangle = 0$$
 soit $\langle S, A \rangle = 0$.

On en déduit que
$$S_n(\mathbb{R}) \subset A_n(\mathbb{R})^{\perp}$$
 (1)

De plus, dim
$$A_n(\mathbb{R})^{\perp} = n - \dim A_n(\mathbb{R})$$
.

Or, d'après 2.(a),
$$E = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$$
 donc dim $S_n(\mathbb{R}) = n - \dim A_n(\mathbb{R})$.

On en déduit que dim
$$S_n(\mathbb{R}) = \dim A_n(\mathbb{R})^{\perp}$$
. (2)

D'après (1) et (2),
$$S_n(\mathbb{R}) = A_n(\mathbb{R})^{\perp}$$
.

3. On introduit la base canonique de $\mathcal{M}_n(\mathbb{R})$ en posant :

$$\forall i \in [\![1,n]\!], \, \forall j \in [\![1,n]\!], \, E_{i,j} = \left(e_{k,l}\right)_{1\leqslant k,l\leqslant n} \text{ avec } e_{k,l} = \left\{\begin{array}{ll} 1 & \text{si } k=i \text{ et } l=j \\ 0 & \text{sinon} \end{array}\right.$$

On a alors
$$F = \text{Vect}(E_{1,1}, E_{2,2}, ..., E_{n,n}).$$

Soit
$$M = (m_{i,j})_{1 \le i,j \le n} \in E$$
.

Alors, en utilisant la remarque importante de la question 1.,

$$M \in F^{\perp} \iff \forall i \in [1, n], \ \langle M, E_{i,i} \rangle = 0 \iff \forall i \in [1, n], \ m_{i,i} = 0.$$

Donc
$$F^{\perp} = \text{Vect}\left(E_{i,j} \text{ telles que } (i,j) \in [1,n]^2 \text{ et } i \neq j\right).$$

En d'autres termes, F^{\perp} est l'ensemble des matrices comprenant des zéros sur la diagonale.

CC BY-NC-SA 3.0 FR

Page 123

EXERCICE 93 algèbre

Énoncé exercice 93

Soit E un espace vectoriel réel de dimension finie n > 0 et $u \in \mathcal{L}(E)$ tel que $u^3 + u^2 + u = 0$. On notera Id l'application identité sur E.

- 1. Montrer que $\text{Im} u \oplus \text{Ker} u = E$.
- 2. (a) Énoncer le lemme des noyaux pour deux polynômes.

Banque épreuve orale de mathématiques session 2015, CCP-MP

- (b) En déduire que $\text{Im} u = \text{Ker}(u^2 + u + \text{Id})$.
- 3. On suppose que u est non bijectif.

Déterminer les valeurs propres de u. Justifier la réponse.

Remarque: les questions 1., 2. et 3. peuvent être traitées indépendamment les unes des autres.

Corrigé exercice 93

```
1. On a u^3 + u^2 + u = 0 (*)
```

Soit $y \in \text{Im} u \cap \text{Ker} u$.

Alors
$$\exists x \in E$$
 tel que $y = u(x)$ et $u(y) = 0$.

Donc, d'après (*),
$$0 = u^3(x) + u^2(x) + u(x) = \underbrace{u^2(y)}_{} + \underbrace{u(y)}_{} + y = 0$$
.

Donc y = 0.

Donc $\operatorname{Ker} u \cap \operatorname{Im} u = \{0\}.$ (1)

De plus, d'après le théorème du rang, $\dim E = \dim \operatorname{Ker} u + \dim \operatorname{Im} u$. (2)

Donc, d'après (1) et (2), $E = \text{Ker} u \oplus \text{Im} u$.

2. (a) Lemme des noyaux pour deux polynômes :

Si A et B sont deux polynômes premiers entre eux, alors $Ker(AB)(u) = KerA(u) \oplus KerB(u)$.

(b) On pose $P = X^3 + X^2 + X$. P est un polynôme annulateur de u donc $\operatorname{Ker} P(u) = E$.

$$P = X(X^2 + X + 1)$$
. De plus, X et $X^2 + X + 1$ sont premiers entre eux.

Donc, d'après le lemme des noyaux, $E = \operatorname{Ker} u \oplus \operatorname{Ker} (u^2 + u + \operatorname{Id})$.

On en déduit que dim
$$Ker(u^2 + u + Id) = \dim E - \dim Keru = \dim Imu$$
. (3)

Prouvons que $\text{Im} u \subset \text{Ker}(u^2 + u + \text{Id}).$

Soit $y \in \text{Im} u$.

alors $\exists x \in E$ tel que y = u(x).

 $(u^2 + u + \mathrm{Id})(y) = (u^3 + u^2 + u)(x) = 0$ d'après (*).

Donc $y \in \text{Ker}(u^2 + u + \text{Id}).$

On a donc prouvé que $\operatorname{Im} u \subset \operatorname{Ker}(u^2 + u + \operatorname{Id})$. (4)

Donc, d'après (3) et (4), $\operatorname{Im} u = \operatorname{Ker}(u^2 + u + \operatorname{Id})$.

3. $P = X^3 + X^2 + X = X(X^2 + X + 1)$ est un polynôme annulateur de u.

Donc si on note sp(u) l'ensemble des valeurs propres de u alors $sp(u) \subset \{racines réelles de <math>P\}$.

Or {racines réelles de P} = {0} donc $\operatorname{sp}(u) \subset \{0\}$. (5)

Or u est non bijectif donc, comme u est un endomorphisme d'un espace vectoriel de dimension finie, u est non injectif.

Donc Ker $u \neq \{0\}$, donc 0 est valeur propre de u. (6)

On en déduit, d'après (5) et (6), que $sp(u) = \{0\}$.

EXERCICE 94 algèbre

Énoncé exercice 94

- Énoncer le théorème de Bézout dans Z.
- 2. Soit a et b deux entiers naturels premiers entre eux. Soit $c \in \mathbb{N}$.

Prouver que : $(a|c \text{ et } b|c) \iff ab|c$.

- 3. On considère le système $(S): \left\{ \begin{array}{ll} x \equiv 6 \mod(17) \\ x \equiv 4 \mod(15) \end{array} \right.$ dans lequel l'inconnue x appartient à $\mathbb Z$.
- (a) Déterminer une solution particulière x₀ de (S) dans Z.
- (b) Déduire des questions précédentes la résolution dans \mathbb{Z} du système (S).

Corrigé exercice 94

1. Théorème de Bézout :

Soit
$$(a,b) \in \mathbb{Z}^2$$
.

$$a \wedge b = 1 \iff \exists (u, v) \in \mathbb{Z}^2 / au + bv = 1.$$

2. Soit $(a, b) \in \mathbb{N}^2$. On suppose que $a \wedge b = 1$.

Soit $c \in \mathbb{N}$.

Prouvons que $ab|c \Longrightarrow a|c \text{ et } b|c$.

Si ab|c alors $\exists k \in \mathbb{Z} / c = kab$.

Alors, c = (kb)a donc a|c et c = (ka)b donc b|c.

Prouvons que $(a|c \text{ et } b|c) \Longrightarrow ab|c$.

$$a \wedge b = 1$$
 donc $\exists (u, v) \in \mathbb{Z}^2 / au + bv = 1$. (1)

De plus
$$a|c$$
 donc $\exists k_1 \in \mathbb{Z} / c = k_1 a$. (2)

De même, b|c donc $\exists k_2 \in \mathbb{Z} / c = k_2 b$. (3)

On multiplie (1) par c et on obtient cau + cbv = c.

Alors, d'après (2) et (3), $(k_2b)au + (k_1a)bv = c$, donc $(k_2u + k_1v)(ab) = c$ et donc ab|c.

On a donc prouvé que $(a|c \text{ et } b|c) \iff ab|c$.

3. (a) Première méthode (méthode générale):

Soit $x \in \mathbb{Z}$.

$$\begin{array}{ll} x \text{ solution de}(S) & \Longleftrightarrow & \exists (k,k') \in \mathbb{Z}^2 \text{ tel que} \left\{ \begin{array}{l} x = 6 + 17k \\ x = 4 + 15k' \\ \end{array} \right. \\ & \Longleftrightarrow & \exists (k,k') \in \mathbb{Z}^2 \text{ tel que} \left\{ \begin{array}{l} x = 6 + 17k \\ x = 6 + 17k \\ 6 + 17k = 4 + 15k' \end{array} \right. \end{array}$$

Or
$$6 + 17k = 4 + 15k' \iff 15k' - 17k = 2$$
.

Pour déterminer une solution particulière x_0 de (S), il suffit donc de trouver une solution particulière (k_0, k'_0) de l'équation 15k' - 17k = 2.

Pour cela, cherchons d'abord, une solution de l'équation 15u + 17v = 1.

17 et 15 sont premiers entre eux.

Déterminons alors un couple (u_0, v_0) d'entiers relatifs tel que $15u_0 + 17v_0 = 1$.

On a: $17 = 15 \times 1 + 2$ puis $15 = 7 \times 2 + 1$.

Alors
$$1 = 15 - 7 \times 2 = 15 - 7 \times (17 - 15 \times 1) = 15 - 17 \times 7 + 15 \times 7 = 15 \times 8 - 17 \times 7$$

Donc $8 \times 15 + (-7) \times 17 = 1$

Ainsi, $16 \times 15 + (-14) \times 17 = 2$.

On peut prendre alors $k'_0 = 16$ et $k_0 = 14$.

Ainsi, $x_0 = 6 + 17 \times k_0 = 6 + 17 \times 14 = 244$ est une solution particulière de (S).

Deuxième méthode:

En observant le système (S), on peut remarquer que $x_0 = -11$ est une solution particulière. Cette méthode est évidemment plus rapide mais ne fonctionne pas toujours.

CC BY-NC-SA 3.0 FR

Page 125

Mise à jour : 11/05/15

(b) x_0 solution particulière de (S) donc $\begin{cases} x_0 = 6 \mod(17) \\ x_0 = 4 \mod(15) \end{cases}$ On en déduit que x solution de (S) si et seulement si $\begin{cases} x - x_0 = 0 \mod(17) \\ x - x_0 = 0 \mod(15) \end{cases}$ c'est-à-dire x solution de $(S) \iff (17|x - x_0 \text{ et } 15|x - x_0)$. Or $17 \wedge 15 = 1$ donc d'après 2., x solution de (S) \iff $(17 \times 15)|x - x_0$.

Donc l'ensemble des solutions de (S) est $\{x_0 + 17 \times 15k, k \in \mathbb{Z}\} = \{244 + 255k, k \in \mathbb{Z}\}.$

Mise à jour : 11/05/15

CC BY-NC-SA 3.0 FR Page 126

BANQUE PROBABILITÉS

EXERCICE 95 probabilités

Énoncé exercice 95

Une urne contient deux boules blanches et huit boules noires.

1. Un joueur tire successivement, avec remise, cing boules dans cette urne. Pour chaque boule blanche tirée, il gagne 2 points et pour chaque boule noire tirée, il perd 3 points. On note X la variable aléatoire représentant le nombre de boules blanches tirées.

Mise à jour : 11/05/15

- On note Y le nombre de points obtenus par le joueur sur une partie. (a) Déterminer la loi de X, son espérance et sa variance.
- (b) Déterminer la loi de Y, son espérance et sa variance.
- 2. Dans cette question, on suppose que les cinq tirages successifs se font sans remise.
- (a) Déterminer la loi de X.
- (b) Déterminer la loi de Y.

Corrigé exercice 95

1. (a) L'expérience est la suivante : l'épreuve "le tirage d'une boule dans l'urne" est répétée 5 fois. Comme les tirages se font avec remise, ces 5 épreuves sont indépendantes. Chaque épreuve n'a que deux issues possibles : le joueur tire une boule blanche (succès avec la probabilité $p=\frac{1}{10}=\frac{1}{5}$) ou le joueur tire une boule noire (échec avec la probabilité $\frac{4}{5}$). La variable X considérée représente donc le nombre de succès au cours de l'expérience et suit donc une loi binomiale de paramètre $(5, \frac{1}{z})$.

C'est-à-dire
$$X(\Omega)=\llbracket 0,5 \rrbracket$$
 et : $\forall\, k\in \llbracket 0,5 \rrbracket,\, P(X=k)={5\choose k}(\frac{1}{5})^k(\frac{4}{5})^{5-k}$

Donc, d'après le cours,
$$E(X) = 5 \times \frac{1}{5} = 1$$
 et $V(X) = 5 \times \frac{1}{5} \times \left(1 - \frac{1}{5}\right) = \frac{4}{5} = 0, 8$.

(b) D'après les hypothèses, on a Y = 2X - 3(5 - X), c'est-à-dire Y = 5X - 15On en déduit que $Y(\Omega) = \{5k - 15 \text{ avec } k \in [0, 5]\}$.

Et on a
$$\forall k \in [0, 5], P(Y = 5k - 15) = P(X = k) = {5 \choose k} (\frac{1}{5})^k (\frac{4}{5})^{5-k}$$

$$Y = 5X - 15$$
, donc $E(Y) = 5E(X) - 15 = 5 - 15 = -10$.

De même,
$$Y = 5X - 15$$
, donc $V(Y) = 25V(X) = 25 \times \frac{4}{5} = 20$.

- 2. Dans cette question, le joueur tire successivement, sans remise, 5 boules dans cette urne.
- (a) Comme les tirages se font sans remise, on peut supposer que le joueur tire les 5 boules dans l'urne en une seule fois au lieu de les tirer successivement. Cette supposition ne change pas la loi de X.

Notons A l'ensemble dont les éléments sont les 10 boules initialement dans l'urne.

 Ω est constitué de toutes les parties à 5 éléments de A. Donc card $\Omega = \begin{pmatrix} 10 \\ 5 \end{pmatrix}$

Soit
$$k \in [0, 2]$$
.

L'événement (X = k) est réalisé lorsque le joueur tire k boules blanches et (5 - k) boules noires dans l'urne. Il a donc $\binom{2}{k}$ possibilités pour le choix des boules blanches et $\binom{8}{5-k}$ possibilités pour le choix des boules noires. Donc : $\forall k \in [0,2]$, $P(X=k) = \frac{\binom{2}{k} \times \binom{8}{5-k}}{\binom{10}{5}}$.

Donc:
$$\forall k \in [0, 2], P(X = k) = \frac{\binom{2}{k} \times \binom{8}{5-k}}{\binom{10}{5}}$$

(b) On a toujours Y = 5X - 15. On en déduit que $Y(\Omega) = \{5k - 15 \text{ avec } k \in \llbracket 0, 2 \rrbracket \}$ Et on a $\forall k \in [0, 2], P(Y = 5k - 15) = P(X = k) = \frac{\binom{2}{k} \times \binom{8}{5 - k}}{\binom{10}{5}}.$

CC BY-NC-SA 3.0 FR Page 127 CC BY-NC-SA 3.0 FR Page 128

EXERCICE 96 probabilités

Énoncé exercice 96

On admet, dans cet exercice, que: $\forall q \in \mathbb{N}^*$, $\sum_{k \in \mathbb{N}} \binom{k}{q} x^{k-q}$ converge et $\forall x \in]-1,1[$, $\sum_{k=0}^{q} \binom{k}{q} x^{k-q} = \frac{1}{(1-x)^{q+1}}$

Mise à jour : 11/05/15

Soit $p \in [0, 1]$ et $r \in \mathbb{N}^*$.

On dépose une bactérie dans une enceinte fermée à l'instant t=0 (le temps est exprimé en secondes).

On envoie un rayon laser par seconde dans cette enceinte.

Le premier rayon laser est envoyé à l'instant t=1.

La bactérie a la probabilité p d'être touchée par le rayon laser.

Les tirs de laser sont indépendants.

La bactérie ne meurt que lorsqu'elle a été touchée r fois par le rayon laser.

Soit X la variable aléatoire égale à la durée de vie de la bactérie.

- 1. Déterminer la loi de X.
- 2. Prouver que X admet une espérance et la calculer.

Corrigé exercice 96

1. $X(\Omega) = [r, +\infty]$ Soit $n \in [r, +\infty]$

(X = n) signifie que n tirs de laser ont été nécessaires pour tuer la bactérie.

C'est-à-dire que, sur les n-1 premiers tirs de laser, la bactérie est touchée (r-1) fois, non touchée ((n-1)-(r-1)) fois et enfin touchée au $n^{\text{ième}}$ tir.

Sur les (n-1) premiers tirs, on a $\binom{n-1}{n-1}$ choix possibles pour les tirs de laser qui atteignent la bactérie.

On en déduit alors que :
$$P(X = n) = \binom{n-1}{r-1} p^{r-1} (1-p)^{(n-1)-(r-1)} \times p$$
.

C'est-à-dire :
$$\forall n \in \llbracket r, +\infty \llbracket, P(X=n) = \binom{n-1}{r-1} p^r (1-p)^{n-r}$$
.

2. On considère la série $\sum_{n\geqslant r} nP(X=n)$.

Soit
$$n \in [r, +\infty[$$
.
 $nP(X = n) = n \binom{n-1}{r-1} p^r (1-p)^{n-r} = n \frac{(n-1)!}{(n-r)!(r-1)!} p^r (1-p)^{n-r} = r \frac{n!}{(n-r)!r!} p^r (1-p)^{n-r}.$

C'est-à-dire :
$$nP(X=n) = r\binom{n}{r}p^r(1-p)^{n-r}$$
.

Donc:
$$\sum_{n \ge r} nP(X=n) = rp^r \sum_{n \ge r} \binom{n}{r} (1-p)^{n-r}.$$

Or, par hypothèse, $p \in [0, 1[$ donc $(1-p) \in [0, 1[$.

On en déduit, d'après le résultat admis dans l'exercice, que $\sum nP(X=n)$ converge et donc E(X) existe.

De plus,
$$E(X) = \sum_{n=r}^{+\infty} nP(X=n) = rp^r \sum_{n=r}^{+\infty} \binom{n}{r} (1-p)^{n-r} = r \frac{p^r}{(1-(1-p))^{r+1}}$$
.

C'est-à-dire
$$E(X) = \frac{r}{p}$$
.

EXERCICE 97 probabilités

Énoncé exercice 97

Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 dont la loi est donnée par :

$$\forall (j,k) \in \mathbb{N}^2, \, P(X=j,Y=k) = \frac{(j+k)\left(\frac{1}{2}\right)^{j+k}}{\text{e $j!$ $k!}}.$$
 1. Déterminer les lois marginales de X et de Y

- Déterminer les lois marginales de X et de Y. Les variables X et Y sont-elles indépendantes?
- 2. Prouver que $E\left[2^{X+Y}\right]$ existe et la calculer.

Corrigé exercice 97

On rappelle que $\forall x \in \mathbb{R}, \sum \frac{x^n}{n!}$ converge et $\sum_{n=1}^{\infty} \frac{x^n}{n!} = e^x$.

1. $Y(\Omega) = \mathbb{N}$. Soit $k \in \mathbb{N}$.

$$P(Y = k) = \sum_{j=0}^{+\infty} P((X = j) \cap (Y = k)) = \sum_{j=0}^{+\infty} \frac{(j+k)\left(\frac{1}{2}\right)^{j+k}}{e \ j! \ k!}.$$

$$\text{Or, } \sum_{i \ge 0} \frac{j\left(\frac{1}{2}\right)^{j+k}}{e \ j! \ k!} = \frac{\left(\frac{1}{2}\right)^{k+1}}{e \ k!} \sum_{i \ge 1} \frac{\left(\frac{1}{2}\right)^{j-1}}{(j-1)!} \ \text{donc } \sum_{i \ge 0} \frac{j\left(\frac{1}{2}\right)^{j+k}}{e \ j! \ k!} \ \text{converge et}$$

$$\sum_{j=0}^{+\infty} \frac{j\left(\frac{1}{2}\right)^{j+k}}{\mathrm{e}\,j!\,k!} = \frac{\left(\frac{1}{2}\right)^{k+1}}{\mathrm{e}\,k!} \sum_{j=1}^{+\infty} \frac{\left(\frac{1}{2}\right)^{j-1}}{(j-1)!} = \frac{\left(\frac{1}{2}\right)^{k+1}}{\mathrm{e}\,k!} \,\mathrm{e}^{\frac{1}{2}} = \frac{\left(\frac{1}{2}\right)^{k+1}}{k!\sqrt{\mathrm{e}}} \quad (*). \tag{\star}$$

De même,
$$\sum_{j\geqslant 0}\frac{k\left(\frac{1}{2}\right)^{j+k}}{\operatorname{e} j!\,k!}=\frac{k\left(\frac{1}{2}\right)^k}{\operatorname{e} k!}\sum_{j\geqslant 0}\frac{\left(\frac{1}{2}\right)^j}{j!}\,\operatorname{donc}\,\sum_{j\geqslant 0}\frac{k\left(\frac{1}{2}\right)^{j+k}}{\operatorname{e} j!\,k!}\,\operatorname{converge}\,\operatorname{et}$$

$$\sum_{i=0}^{+\infty} \frac{k\left(\frac{1}{2}\right)^{j+k}}{\mathrm{e}\; j!\; k!} = \frac{k\left(\frac{1}{2}\right)^k}{\mathrm{e}\; k!} \sum_{i=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^j}{j!} = \frac{k\left(\frac{1}{2}\right)^k}{\mathrm{e}\; k!} \mathrm{e}^{\frac{1}{2}} = \frac{k\left(\frac{1}{2}\right)^k}{k!\sqrt{\mathrm{e}}} \quad (**). \tag{$\star\star$}$$

Donc, d'après (*) et (**), on en déduit que :

$$P(Y = k) = \frac{\left(\frac{1}{2}\right)^{k+1}}{k!\sqrt{e}} + \frac{k\left(\frac{1}{2}\right)^{k}}{k!\sqrt{e}} = \frac{\left(\frac{1}{2} + k\right)\left(\frac{1}{2}\right)^{k}}{k!\sqrt{e}}.$$

$$X(\Omega) = \mathbb{N} \text{ et } \forall j \in \mathbb{N}, P(X = j) = \frac{(\frac{1}{2} + j)(\frac{1}{2})^j}{j!\sqrt{e}}.$$

Les variables X et Y ne sont pas indépendantes car :

$$P(X = 0, Y = 0) = 0$$
 et $P(X = 0)P(Y = 0) \neq 0$.

2. Posons $\forall (j,k) \in \mathbb{N}^2$, $a_{i,k} = 2^{j+k} P(X=j,Y=k)$.

On a
$$a_{j,k} = \frac{j+k}{e j! k!} = \frac{j}{e j! k!} + \frac{k}{e j! k!}$$
.

$$\forall k \in \mathbb{N}, \sum_{j \geqslant 0} \frac{j}{\operatorname{e} j! \, k!} = \frac{1}{\operatorname{e} k!} \sum_{j \geqslant 1} \frac{1}{(j-1)!} \text{ converge et } \sum_{j=0}^{+\infty} \frac{j}{\operatorname{e} j! \, k!} = \frac{1}{\operatorname{e} k!} \sum_{j=1}^{+\infty} \frac{1}{(j-1)!} = \frac{1}{k!}.$$

De même,
$$\sum_{j \ge 0} \frac{k}{e \ j! \ k!} = \frac{k}{e \ k!} \sum_{j \ge 0} \frac{1}{j!}$$
 converge et $\sum_{j=0}^{+\infty} \frac{k}{e \ j! \ k!} = \frac{k}{e \ k!} \sum_{j=0} \frac{1}{j!} = \frac{k}{k!}$.

Ensuite,
$$\sum_{k\geq 0} \frac{1}{k!}$$
 et $\sum_{k\geqslant 0} \frac{k}{k!} = \sum_{k\geqslant 1} \frac{1}{(k-1)!}$ convergent. De plus $\sum_{k=0}^{+\infty} \frac{1}{k!} = e$ et $\sum_{k=0}^{+\infty} \frac{k}{k!} = e$.

Donc la famille $(a_{i,k})_{(i,k)\in\mathbb{N}^2}$ est sommable.

On en déduit que $E\left[2^{X+Y}\right]$ existe et $E\left[2^{X+Y}\right]=2$ e.

CC BY-NC-SA 3.0 FR Page 131 CC BY-NC-SA 3.0 FR Page 132

EXERCICE 98 probabilités

Énoncé exercice 98

Mise à jour : 11/05/15

Une secrétaire effectue, une première fois, un appel téléphonique vers n correspondants distincts.

On admet que les n appels constituent n expériences indépendantes et que, pour chaque appel, la probabilité d'obtenir le correspondant demandé est p $(p \in]0,1[)$.

Soit X la variable aléatoire représentant le nombre de correspondants obtenus.

- 1. Donner la loi de X. Justifier.
- 2. La secrétaire rappelle une seconde fois, dans les mêmes conditions, chacun des n X correspondants qu'elle n'a pas pu joindre au cours de la première série d'appels. On note Y la variable aléatoire représentant le nombre de personnes jointes au cours de la seconde série d'appels.
- (a) Soit $i \in [0, n]$. Déterminer, pour $k \in \mathbb{N}$, P(Y = k | X = i).
- (b) Prouver que Z = X + Y suit une loi binomiale dont on déterminera le paramètre.
- (c) Déterminer l'espérance et la variance de Z.

Corrigé exercice 98

 L'expérience est la suivante : l'épreuve de l'appel téléphonique de la secrétaire vers un correspondant est répétée n fois et ces n épreuves sont mutuellement indépendantes.

De plus, chaque épreuve n'a que deux issues possibles : le correspondant est joint avec la probabilité p (succès) ou le correspondant n'est pas joint avec la probabilité 1-p (échec).

La variable X considérée représente le nombre de succés et suit donc une loi binômiale de paramètres (n,p).

C'est-à-dire
$$X(\Omega) = \llbracket 0, n \rrbracket$$
 et $\forall k \in \llbracket 0, n \rrbracket$ $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$.

2. (a) Soit $i \in [0, n]$. Sous la condition (X = i), la secrétaire rappelle n - i correspondants lors de la seconde série d'appels et donc :

$$P(Y=k|X=i) = \left\{ \begin{array}{l} \binom{n-i}{k} p^k (1-p)^{n-i-k} \text{ si } k \in \llbracket 0, n-i \rrbracket \\ 0 \text{ sinon} \end{array} \right.$$

$$\text{(b)} \ \ Z(\Omega) = [\![0,n)]\!] \ \text{et} \ \forall k \in [\![0,n)]\!] \ P(Z=k) = \sum_{i=0}^k P(X=i \cap Y=k-i) = \sum_{i=0}^k P(Y=k-i|X=i) P(X=i).$$

Soit $k \in [0, n]$. D'après les questions précédentes, $P(Z = k) = \sum_{i=0}^{k} \binom{n-i}{k-i} \binom{n}{i} p^k (1-p)^{2n-k-i}$.

$$\operatorname{Or} \binom{n-i}{k-i} \binom{n}{i} = \frac{(n-i)!}{(n-k)! (k-i)!} \frac{n!}{i! (n-i)!} = \frac{n!}{(k-i)! (n-k)! i!} = \frac{k!}{(k-i)! (n-k)! i!} = \binom{k}{i!} \binom{n}{k}.$$

$$\operatorname{Donc} P(Z=k) = \sum_{i=0}^{k} \binom{k}{i} \binom{n}{k} p^{k} (1-p)^{2n-k-i} = \binom{n}{k} p^{k} (1-p)^{2n-k} \sum_{i=0}^{k} \binom{k}{i} \left(\frac{1}{1-p}\right)^{i}.$$

Donc d'après le binôme de Newton,

$$P(Z=k) = \binom{n}{k} p^k (1-p)^{2n-k} \left(\frac{2-p}{1-p}\right)^k = \binom{n}{k} \left(p(2-p)\right)^k \left((1-p)^2\right)^{n-k}.$$

On vérifie que $1 - p(2 - p) = (1 - p)^2$ et donc on peut conclure que :

Z suit une loi binomiale de paramètre (n, p(2-p)).

(c) D'après le cours, comme Z suit une loi binomiale de paramètre (n,p(2-p)), alors :

$$E(Z) = np(2-p)$$
 et $V(Z) = np(2-p)(1-p(2-p)) = np(2-p)(p-1)^2$.

Mise à jour : 11/05/15

EXERCICE 99 probabilités

Énoncé exercice 99

- 1. Rappeler l'inégalité de Bienaymé-Tchebychev.
- 2. Soit (Y_n) une suite de variables aléatoires mutuellement indépendantes, de même loi et admettant un moment d'ordre 2. On pose $S_n = \sum Y_k$.

Prouver que : $\forall a \in]0, +\infty[, P\left(\left|\frac{S_n}{S_n} - E(Y_1)\right| \geqslant a\right) \leqslant \frac{V(Y_1)}{S_n}$

3. Application: On effectue des tirages successifs, avec remise, d'une boule dans une urne contenant 2 boules rouges et 3 boules noires.

À partir de quel nombre de tirages peut-on garantir à plus de 95% que la proportion de boules rouges obtenues restera comprise entre 0, 35 et 0, 45?

Indication : considérer la suite (Y_i) de variables aléatoires de Bernoulli où Y_i mesure l'issue du $i^{\text{ème}}$ tirage.

Corrigé exercice 99

- 1. Soit $a \in]0, +\infty[$. Pour toute variable aléatoire X admettant un moment d'ordre 2, on a : $P(|X - E(X)| \ge a) \le \frac{V(X)}{2}$
- 2. On pose $X = \frac{S_n}{n}$.

Par linéarité de l'espérance et comme toutes les variables Y_i ont la même espérance, on a $E(X) = E(Y_1)$.

De plus, comme les variables sont mutuellement indépendantes, on a $V(X) = \frac{1}{n^2}V(S_n) = \frac{1}{n}V(Y_1)$.

Alors, en appliquant 1. à X, on obtient le résultat souhaité.

3. $\forall i \in \mathbb{N}^*$, on considère la variable aléatoire Y_i valant 1 si la $i^{\text{ème}}$ boule tirée est rouge et 0 sinon.

 Y_i suit une loi de Bernoulli de paramètre p avec $p=\frac{2}{5}=0,4$. Les variables Y_i suivent la même loi, sont mutuellement indépendantes et admettent des moments d'ordre 2. On a d'après le cours, $\forall i \in \mathbb{N}, E(Y_i) = 0, 4 \text{ et } V(Y_i) = 0, 4(1-0,4) = 0, 24.$

On pose $S_n = \sum_{i=1}^n Y_i$. S_n représente le nombre de boules rouges obtenues au cours de n tirages. $\sum_{i=1}^n Y_i$ Alors $T_n = \frac{1}{n}$ représente la proportion de boules rouges obtenues au cours de n tirages. On cherche à partir de combien de tirages on a $P(0, 35 \leqslant T_n \leqslant 0, 45) > 0,95$.

$$\sum_{i=1}^{n} Y_i$$

Or
$$P(0,35 \leqslant T_n \leqslant 0,45) = P\left(0,35 \leqslant \frac{S_n}{n} \leqslant 0,45\right) = P\left(-0,05 \leqslant \frac{S_n}{n} - E(Y_1) \leqslant 0,05\right)$$

= $P\left(\left|\frac{S_n}{n} - E(Y_1)\right| \leqslant 0,05\right) = 1 - P\left(\left|\frac{S_n}{n} - E(Y_1)\right| > 0,05\right)$.

On a donc $P(0, 35 \le T_n \le 0, 45) = 1 - P\left(\left|\frac{S_n}{n} - E(Y_1)\right| > 0, 05\right).$

Or, d'après la question précédente, $P\left(\left|\frac{S_n}{n} - E(Y_1)\right| \geqslant 0,05\right) \leqslant \frac{0,24}{n(0,05)^2}$. Donc $P(0,35 \leqslant T_n \leqslant 0,45) \geqslant 1 - \frac{0,24}{n(0,05)^2}$.

Il suffit alors pour répondre au problème de chercher à partir de quel rang n, on a $1 - \frac{0.24}{n(0.05)^2} \ge 0.95$.

La résolution de cette inéquation donne $n\geqslant \frac{0,24}{0.053}$ c'est-à-dire $n\geqslant 1920$

EXERCICE 100 probabilités

Énoncé exercice 100

Soit $\lambda \in]0, +\infty[$.

Soit X une variable aléatoire discrète à valeurs dans \mathbb{N}^* . On suppose que $\forall n \in \mathbb{N}^*$, $P(X=n) = \frac{\lambda}{n(n+1)(n+2)}$.

- 1. Décomposer en éléments simples la fraction rationnelle R définie par $R(x) = \frac{1}{x(x+1)(x+2)}$
- 2. Calculer λ .
- 3. Prouver que X admet une espérance, puis la calculer.
- X admet-elle une variance? Justifier.

Corrigé exercice 100

- 1. On obtient $R(x) = \frac{1}{2x} \frac{1}{x+1} + \frac{1}{2(x+2)}$
- 2. Soit $N \in \mathbb{N}^*$.

$$P(X \leqslant N) = \lambda \sum_{n=1}^{N} \left(\frac{1}{2n} - \frac{1}{n+1} + \frac{1}{2(n+2)} \right) = \lambda \left(\frac{1}{2} \sum_{n=1}^{N} \frac{1}{n} - \sum_{n=2}^{N+1} \frac{1}{n} + \frac{1}{2} \sum_{n=3}^{N+2} \frac{1}{n} \right)$$

Et donc, après télescopage, $P(X \le N) = \lambda \left(\frac{1}{2} + \frac{1}{4} - \frac{1}{2} - \frac{1}{N+1} + \frac{1}{2(N+1)} + \frac{1}{2(N+2)} \right)$ c'est-à-dire :

$$P(X \le N) = \lambda \left(\frac{1}{4} - \frac{1}{2(N+1)} + \frac{1}{2(N+2)}\right). \quad (*)$$

3. $\sum_{n\geqslant 1} nP(X=n) = \sum_{n\geqslant 1} \frac{4}{(n+1)(n+2)}$ converge car au voisinage de $+\infty$, $\frac{4}{(n+1)(n+2)} \underset{+\infty}{\sim} \frac{4}{n^2}$. Donc X admet une espérance.

De plus,
$$\forall n \in \mathbb{N}^*$$
, $S_n = \sum_{k=1}^n kP(X=k) = \sum_{k=1}^n \frac{4}{(k+1)(k+2)} = 4\sum_{k=1}^n \left(\frac{1}{k+1} - \frac{1}{k+2}\right) = 4\sum_{k=1}^n \left(\frac$

$$4\left(\sum_{k=1}^{n} \frac{1}{k+1} - \sum_{k=2}^{n+1} \frac{1}{k+1}\right) = 2 - \frac{4}{n+2}.$$

Donc
$$\lim_{n \to +\infty} \sum_{k=1}^{n} kP(X=k) = 2$$
 et $E(X) = 2$.

4. Comme E(X) existe, X admettra une variance à condition que X^2 admette une espérance.

$$\sum_{n\geqslant 1} n^2 P(X=n) = \sum_{n\geqslant 1} \frac{4n}{(n+1)(n+2)}.$$

Or, au voisinage de $+\infty$, $\frac{4n}{(n+1)(n+2)} \stackrel{4}{\sim} \frac{4}{n}$ et $\sum_{n\geq 1} \frac{1}{n}$ diverge (série harmonique).

Donc $\sum n^2 P(X=n)$ diverge.

 $\overrightarrow{n\geqslant 1}$ Donc X^2 n'admet pas d'espérance et donc X n'admet pas de variance.

EXERCICE 101 probabilités

Énoncé exercice 101

Dans une zone désertique, un animal erre entre trois points d'eau A, B et C.

À l'instant t = 0, il se trouve au point A.

Quand il a épuisé l'eau du point où il se trouve, il part avec équiprobabilité rejoindre l'un des deux autres points d'eau.

Mise à jour : 11/05/15

L'eau du point qu'il vient de quitter se régénère alors.

Soit $n \in \mathbb{N}$.

On note A_n l'événement «l'animal est en A après son $n^{\text{ième}}$ trajet».

On note B_n l'événement «l'animal est en B après son $n^{\text{ième}}$ trajet».

On note C_n l'événement «l'animal est en C après son $n^{\text{ième}}$ trajet».

On pose $P(A_n) = a_n$, $P(B_n) = b_n$ et $P(C_n) = c_n$

- 1. (a) Exprimer, en le justifiant, a_{n+1} en fonction de a_n , b_n et c_n .
- (b) Exprimer, de même, b_{n+1} et c_{n+1} en fonction de a_n , b_n et c_n .
- 2. On considère la matrice $A = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$
- (a) Justifier, sans calcul, que la matrice A est diagonalisable.
- (b) Prouver que $-\frac{1}{2}$ est valeur propre de A et déterminer le sous-espace propre associé.
- (c) Déterminer une matrice P inversible et une matrice D diagonale de $\mathcal{M}_3(\mathbb{R})$ telles que $D = P^{-1}AP$. **Remarque** : le calcul de P^{-1} n'est pas demandé.
- 3. Montrer comment les résultats de la question 2. peuvent être utilisés pour calculer a_n , b_n et c_n en fonction

Remarque : aucune expression finalisée de a_n , b_n et c_n n'est demandée.

Corrigé exercice 101

- 1. (a) (A_n, B_n, C_n) est un système complet d'événements donc d'après la formule des probabilités totales : $P(A_{n+1}) = P(A_{n+1}|A_n)P(A_n) + P(A_{n+1}|B_n)P(B_n) + P(A_{n+1}|C_n)P(C_n).$ donc $a_{n+1} = 0a_n + \frac{1}{2}b_n + \frac{1}{2}c_n$ c'est-à-dire $a_{n+1} = \frac{1}{2}b_n + \frac{1}{2}c_n$.
- (b) De même, $b_{n+1} = \frac{1}{2}a_n + \frac{1}{2}c_n$ et $c_{n+1} = \frac{1}{2}a_n + \frac{1}{2}b_n$.
- 2. (a) A est symétrique à coefficients réels, donc elle est diagonalisable.
- $\begin{array}{ll} \text{(b)} \ \ A+\frac{1}{2}\mathrm{I}_{3}=\frac{1}{2}\begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix} \text{donc rg} \left(A+\frac{1}{2}\mathrm{I}_{3}\right)=1. \\ \text{Donc} \ -\frac{1}{2} \text{ est valeur propre de } A \text{ et } \dim E_{-\frac{1}{2}}(A)=2. \end{array}$

L'expression de $A + \frac{1}{2}I_3$ donne immédiatement que $E_{-\frac{1}{2}}(A) = \text{Vect}\left(\begin{pmatrix} 1\\0\\-1 \end{pmatrix},\begin{pmatrix} 0\\1\\-1 \end{pmatrix}\right)$

(c) Puisque $\operatorname{tr}(A) = 0$, on en déduit que 1 est une valeur propre de A de multiplicité 1. A étant symétrique réelle, les sous-espaces propres sont supplémentaires sur \mathbb{R}^3 et orthogonaux deux à

On en déduit que $\mathbb{R}^3 = E_{-\frac{1}{2}}(A) \stackrel{\perp}{\oplus} E_1(A)$, donc que $E_1(A) = \left(E_{-\frac{1}{2}}(A)\right)^{\perp}$.

Donc
$$E_1(A) = \text{Vect} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
.

En posant $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & -1/2 \end{pmatrix}$, on a alors $D = P^{-1}AP$.

3. D'après la question 1., $\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix} = A \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$

Et donc on prouve par récurrence que :

$$\forall n \in \mathbb{N}, \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = A^n \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix}$$

Or $A = PDP^{-1}$ donc $A^n = PD^nP^{-1}$.

Donc $\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = PD^nP^{-1} \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix}$

Or, d'après l'énoncé, $a_0 = 1, b_0 = 0$ et $c_0 = 0$ donc :
$$\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-\frac{1}{2})^n & 0 \\ 0 & 0 & (-\frac{1}{2})^n \end{pmatrix} P^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

EXERCICE 102 probabilités

Énoncé exercice 102

Soit $N \in \mathbb{N}^*$.

Soit $p \in [0, 1[$. On pose q = 1 - p.

On considère N variables aléatoires X_1, X_2, \dots, X_N définies sur un même espace probabilisé (Ω, \mathcal{A}, P) , mutuellement indépendantes et de même loi géométrique de paramètre p.

1. Soit $i \in [1, N]$. Soit $n \in \mathbb{N}^*$.

Déterminer $P(X_i \leq n)$, puis $P(X_i > n)$.

2. On considère la variable aléatoire Y définie par $Y = \min_{1 \le i \le N} (X_i)$

c'est-à-dire $\forall \omega \in \Omega, Y(\omega) = \min(X_1(\omega), \cdots, X_N(\omega)), \min$ désignant « le plus petit élément de ».

- (a) Soit $n \in \mathbb{N}^*$. Calculer P(Y > n). En déduire $P(Y \leq n)$, puis P(Y = n).
- (b) Prouver que Y admet une espérance et la calculer.

Corrigé exercice 102

1. Soit $i \in [1, N]$.

$$X_i(\Omega) = \mathbb{N}^*$$
 et $\forall k \in \mathbb{N}^*$, $P(X_i = k) = p(1-p)^{k-1} = pq^{k-1}$.

Alors on a
$$P(X_i \le n) = \sum_{k=1}^{n} P(X_i = k) = \sum_{k=1}^{n} pq^{k-1} = p\frac{1-q^n}{1-q} = 1-q^n$$
.
Donc $P(X_i > n) = 1 - P(X_i \le n) = q^n$.

Donc
$$P(X_i > n) = 1 - P(X_i \le n) = q^n$$
.

2. (a) $Y(\Omega) = \mathbb{N}^*$.

Soit $n \in \mathbb{N}^*$.

$$P(Y > n) = P((X_1 > n) \cap \cdots \cap (X_N > n))$$

Donc $P(Y > n) = \prod_{i=1}^{n} P(X_i > n)$ car les variables X_1, \dots, X_N sont mutuellement indépendantes.

Donc
$$P(Y > n) = \prod_{n=1}^{N} q^n = q^{nN}$$
.

Or
$$P(Y \leqslant n) = 1 - P(Y > n)$$

donc
$$P(Y \leqslant n) = 1 - q^{nN}$$
.

Calcul de P(Y = n):

Premier cas : si
$$n \ge 2$$
.

$$P(Y = n) = P(Y \leqslant n) - P(Y \leqslant n - 1).$$

Donc
$$P(Y = n) = q^{(n-1)N}(1 - q^N)$$
.

Deuxième cas : si n=1.

$$P(Y = n) = P(Y = 1) = 1 - P(Y > 1) = 1 - q^{N}.$$

Conclusion: $\forall n \in \mathbb{N}^*, P(Y = n) = q^{(n-1)N}(1 - q^N).$

(b) D'après 2.(a), $\forall n \in \mathbb{N}^*, P(Y = n) = q^{(n-1)N}(1 - q^N)$.

D'après 2.(a), $\forall n \in \mathbb{N}^*$, $P(Y=n) = q^{n-1} - (1-q^n)$. C'est-à-dire $\forall n \in \mathbb{N}^*$, $P(Y=n) = (1-(1-q^N))^{n-1}(1-q^N)$. On en déduit que Y suit une loi géométrique de paramètre $1-q^N$.

Donc, d'après le cours, Y admet une espérance et $E(Y) = \frac{1}{1 - a^N}$

EXERCICE 103 probabilités

Énoncé exercice 103

Mise à jour : 11/05/15

Remarque : les questions 1. et 2. sont indépendantes.

Soit (Ω, A, P) un espace probabilisé.

1. (a) Soit X_1 et X_2 deux variables aléatoires définies sur (Ω, \mathcal{A}, P) .

On suppose que X_1 et X_2 sont indépendantes et suivent des lois de Poisson, de paramètres respectifs λ_1

Déterminer la loi de $X_1 + X_2$.

- (b) En déduire l'espérance et la variance de $X_1 + X_2$.
- 2. Soit X et Y deux variables aléatoires définies sur (Ω, \mathcal{A}, P)

On suppose que Y suit une loi de Poisson de paramètre λ .

On suppose que $X(\Omega) = \mathbb{N}$ et que, pour tout $m \in \mathbb{N}$, la loi conditionnelle de X sachant (Y = m) est une loi binomiale de paramètre (m, p).

Déterminer la loi de X.

Corrigé exercice 103

1. (a) $X_1(\Omega) = \mathbb{N}$ et $X_2(\Omega) = \mathbb{N}$ donc $(X_1 + X_2)(\Omega) = \mathbb{N}$.

 $(X_1+X_2=n)=\bigcup_{k=0}^n ((X_1=k)\cap (X_2=n-k))$ (union d'évènements deux à deux disjoints).

$$\begin{split} P(X_1 + X_2 = n) &= \sum_{k=0}^n P\left((X_1 = k) \cap (X_2 = n - k)\right) \\ &= \sum_{k=0}^n P(X_1 = k) P(X_2 = n - k) \operatorname{car} X_1 \operatorname{et} X_2 \operatorname{sont} \operatorname{indépendantes}. \\ &= \sum_{k=0}^n e^{-\lambda_1} \frac{\lambda_1^k}{k!} \times e^{-\lambda_2} \frac{\lambda_2^{n-k}}{(n-k)!} = \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \sum_{k=0}^n \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k} \\ &= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \sum_{k=0}^n \binom{n}{k} \lambda_1^k \lambda_2^{n-k} = e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^n}{n!} \end{split}$$

Ainsi $X_1 + X_2 \rightsquigarrow \mathcal{P}(\lambda_1 + \lambda_2)$.

Remarque : cette question peut aussi être traitée en utilisant les fonctions génératrices

(b) $X_1 + X_2 \rightsquigarrow \mathscr{P}(\lambda_1 + \lambda_2)$ donc, d'après le cours, $E(X_1 + X_2) = \lambda_1 + \lambda_2$ et $V(X_1 + X_2) = \lambda_1 + \lambda_2$.

2. Soit
$$k \in \mathbb{N}$$
, $P(X = k) = \sum_{m=0}^{+\infty} P((X = k) \cap (Y = m)) = \sum_{m=0}^{+\infty} P_{(Y = m)}(X = k)P(Y = m)$.

Or, par hypothèse,

$$\forall m \in \mathbb{N}, \ P_{(Y=m)}(X=k) = \left\{ \begin{array}{ll} \binom{m}{k} p^k (1-p)^{m-k} & \text{si } k \leqslant m \\ 0 & \text{sinon} \end{array} \right.$$

Donc :

$$\begin{split} P(X=k) &= \sum_{m=k}^{+\infty} \binom{m}{k} p^k (1-p)^{m-k} \mathrm{e}^{-\lambda} \frac{\lambda^m}{m!} = \mathrm{e}^{-\lambda} \frac{p^k}{k!} \lambda^k \sum_{m=k}^{+\infty} \frac{(\lambda(1-p))^{m-k}}{(m-k)!} \\ &= \mathrm{e}^{-\lambda} \frac{p^k}{k!} \lambda^k \sum_{m=0}^{+\infty} \frac{(\lambda(1-p))^m}{m!} = \mathrm{e}^{-\lambda} \frac{p^k}{k!} \lambda^k \mathrm{e}^{\lambda(1-p)} \\ &= \mathrm{e}^{-\lambda p} \frac{(\lambda p)^k}{k!} \end{split}$$

Mise à jour : 11/05/15

Ainsi $X \leadsto \mathscr{P}(\lambda p)$.

EXERCICE 104 probabilités

Énoncé exercice 104

On dispose de n boules numérotées de 1 à n et d'une boîte formée de trois compartiments identiques également numérotés de 1 à 3.

On lance simultanément les n boules.

Elles viennent toutes se ranger aléatoirement dans les 3 compartiments.

Chaque compartiment peut éventuellement contenir les n boules.

On note X la variable aléatoire qui à chaque expérience aléatoire fait correspondre le nombre de compartiments restés vides.

- 1. Préciser les valeurs prises par X.
- 2. (a) Déterminer la probabilité P(X=2).
- (b) Finir de déterminer la loi de probabilité de X.
- 3. (a) Calculer E(X).
- (b) Déterminer $\lim_{n\to+\infty} E(X)$. Interpréter ce résultat

Corrigé exercice 104

- 1. $X(\Omega) = [0, 2]$.
- 2. (a) Pour que l'événement (X=2) se réalise, on a $\binom{3}{2}$ possibilités pour choisir les 2 compartiments restant vides. Les deux compartiments restant vides étant choisis, chacune des n boules viendra se placer dans le troisième compartiment avec la probabilité $\frac{1}{2}$.

De plus les placements des différentes boules dans les trois compartiments sont indépendants.

Donc
$$P(X = 2) = {3 \choose 2} \left(\frac{1}{3}\right)^n = 3\left(\frac{1}{3}\right)^n = \left(\frac{1}{3}\right)^{n-1}$$
.

(b) Déterminons P(X = 1).

Pour que l'événement (X = 1) se réalise, on a $\binom{3}{1}$ possibilités pour choisir le compartiment restant vide. Le compartiment restant vide étant choisi, on note A l'événement : «les n boules doivent se placer dans les deux compartiments restants (que nous appellerons compartiment a et compartiment b) sans laisser l'un d'eux vide».

Soit
$$k \in [1, n-1]$$
.

On note A_k l'événement : « k boules se placent dans le compartiment a et les (n-k) boules restantes dans le compartiment b».

On a alors
$$A = \bigcup_{k=1}^{n-1} A_k$$
.

On a
$$\forall k \in \llbracket 1, n-1 \rrbracket$$
, $P(A_k) = \binom{n}{k} \left(\frac{1}{3}\right)^k \left(\frac{1}{3}\right)^{n-k} = \binom{n}{k} \left(\frac{1}{3}\right)^n$.

$$\text{Donc } P(X=1) = \binom{3}{1} P(\bigcup_{k=1}^{n-1} A_k) = 3 \sum_{k=1}^{n-1} P(A_k) \text{ car } A_1, A_2, ..., A_{n-1} \text{ sont deux à deux incompatibles.}$$

Done

$$P(X=1) = 3\sum_{k=1}^{n-1} \binom{n}{k} \left(\frac{1}{3}\right)^n = \left(\frac{1}{3}\right)^{n-1} \sum_{k=1}^{n-1} \binom{n}{k} = \left(\frac{1}{3}\right)^{n-1} \left(\sum_{k=0}^n \binom{n}{k} - 2\right) = \left(\frac{1}{3}\right)^{n-1} (2^n - 2).$$

Donc
$$P(X = 1) = \left(\frac{1}{3}\right)^{n-1} (2^n - 2)$$
.

Enfin,
$$P(X = 0) = 1 - P(X = 2) - P(X = 1)$$
 donc $P(X = 0) = 1 - \left(\frac{1}{3}\right)^{n-1} - \left(\frac{1}{3}\right)^{n-1} (2^n - 2)$.
Donc $P(X = 0) = 1 - \left(\frac{1}{3}\right)^{n-1} (2^n - 1)$.

Autre méthode :

Une épreuve peut être assimilée à une application de $[\![1,n]\!]$ (ensemble des numéros des boules) dans $[\![1,3]\!]$ (ensemble des numéros des cases).

Mise à jour : 11/05/15

Notons Ω l'ensemble de ces applications.

On a donc : card $\Omega = 3^n$.

Les boules vont se "ranger aléatoirement dans les trois compartiments", donc il y a équiprobabilité sur Ω .

(a) L'événement (X = 2) correspond aux applications dont les images se concentrent sur le même élément de [1, 3].

Donc
$$P(X=2) = \frac{3}{3^n} = \frac{1}{3^{n-1}}$$

(b) Comptons à présent le nombre d'applications correspondant à l'événement (X=1), c'est-à-dire le nombre d'applications dont l'ensemble des images est constitué de deux éléments exactement.

On a 3 possibilités pour choisir l'élément de [1,3] qui n'a pas d'antécédent et ensuite, chaque fois, il faut compter le nombre d'applications de [1,n] vers les deux éléments restants de [1,3], en excluant bien sûr les deux applications qui concentrent les images sur le même élément.

On obtient donc $2^{n} - 2$ applications.

D'où
$$P(X = 1) = \frac{3 \times (2^{n} - 2)}{3^n} = \frac{1}{3^{n-1}} (2^n - 2).$$

Enfin, comme dans la méthode précédente, P(X=0)=1-P(X=2)-P(X=1) donc

$$P(X=0) = 1 - \left(\frac{1}{3}\right)^{n-1} - \left(\frac{1}{3}\right)^{n-1} (2^n - 2).$$

3. (a)
$$E(X) = 0P(X = 0) + 1P(X = 1) + 2P(X = 2) = \left(\frac{1}{3}\right)^{n-1} (2^n - 2) + 2\left(\frac{1}{3}\right)^{n-1}$$
.
Donc $E(X) = 3\left(\frac{2}{3}\right)^n$.

(b) D'après 3.(a),
$$\lim_{n\to +\infty} E(X) = \lim_{n\to +\infty} 3\left(\frac{2}{3}\right)^n = 0.$$

Quand le nombre de boules tend vers $+\infty$, en moyenne aucun des trois compartiments ne restera vide.

EXERCICE 105 probabilités

Énoncé exercice 105

- 1. Énoncer et démontrer la formule de Bayes pour un système complet d'événements.
- $2.\,$ On dispose de 100 dés dont 25 sont pipés.

Pour chaque dé pipé, la probabilité d'obtenir le chiffre 6 lors d'un lancer vaut $\frac{1}{2}$.

- (a) On tire un dé au hasard parmi les 100 dés. On lance ce dé et on obtient le chiffre 6. Quelle est la probabilité que ce dé soit pipé ?
- (b) Soit $n \in \mathbb{N}^*$.

On tire un dé au hasard parmi les 100 dés. On lance ce dé n fois et on obtient n fois le chiffre 6. Quelle est la probabilité p_n que ce dé soit pipé?

(c) Déterminer $\lim_{n\to+\infty} p_n$. Interpréter ce résultat

Corrigé exercice 105

Soit (Ω, A, P) un espace probabilisé.

Soit B un événement de probabilité non nulle et $(A_i)_{i\in I}$ un système complet d'événements de probabilités non nulles.

Alors,
$$\forall i_0 \in I$$
, $P_B(A_{i_0}) = \frac{P(A_{i_0})P_{A_{i_0}}(B)}{\sum_{i \in I} P(A_i)P_{A_i}(B)}$.

Preuve:
$$P_B(A_{i_0}) = \frac{P(A_{i_0} \cap B)}{P(B)} = \frac{P(A_{i_0})P_{A_{i_0}}(B)}{P(B)}$$
. (1)

Or $(A_i)_{i\in I}$ un système complet d'événements donc $P(B)=\sum_{i\in I}P(A_i\cap B)$

Donc
$$P(B) = \sum_{i \in I} P(A_i) P_{A_i}(B)$$
. (2).
(1) et (2) donnent le résultat souhaité.

2. (a) On tire au hasard un dé parmi les 100 dés

Notons T l'événement : «le dé choisi est pipé».

Notons A l'événement : « On obtient le chiffre 6 lors du lancer ».

On demande de calculer $P_{A}(T)$.

Le système (T, \overline{T}) est un système complet d'événements de probabilités non nulles.

On a d'ailleurs,
$$P(T) = \frac{25}{100} = \frac{1}{4}$$
 et donc $P(\overline{T}) = \frac{3}{4}$.

Alors, d'après la formule de Bayes, on a :

$$P_A(T) = \frac{P(T)P_T(A)}{P_T(A)P(T) + P_{\overline{T}}(A)P(\overline{T})} = \frac{\frac{1}{4} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{4} + \frac{1}{6} \times \frac{3}{4}} = \frac{1}{2}.$$

(b) Soit n ∈ N*.

On choisit au hasard un dé parmi les 100 dés.

 $\forall k \in [1, n]$, on note A_k l'événement « on tire le chiffre 6 au $k^{\text{ième}}$ lancer ».

On pose
$$A = \bigcap_{k=1}^{n} A_k$$
.

On nous demande de calculer $p_n = P_A(T)$.

Le système (T, \overline{T}) est un système complet d'événements de probabilités non nulles.

On a d'ailleurs,
$$P(T) = \frac{25}{100} = \frac{1}{4}$$
 et donc $P(\overline{T}) = \frac{3}{4}$

Alors d'après la formule de Bayes, on a :

$$p_n = P_A(T) = \frac{P(T)P_T(A)}{P_T(A)P(T) + P_{\overline{T}}(A)P\left(\overline{T}\right)}$$

Donc
$$p_n = \frac{\frac{1}{4} \times \left(\frac{1}{2}\right)^n}{\left(\frac{1}{2}\right)^n \times \frac{1}{4} + \left(\frac{1}{6}\right)^n \times \frac{3}{4}} = \frac{1}{1 + \frac{1}{3^{n-1}}}.$$

(c)
$$\forall n \in \mathbb{N}^*, p_n = \frac{1}{1 + \frac{1}{2^{n-1}}} \text{ Donc } \lim_{n \to +\infty} p_n = 1$$

(c) $\forall n \in \mathbb{N}^*, p_n = \frac{1}{1 + \frac{1}{3^{n-1}}}$ Donc $\lim_{n \to +\infty} p_n = 1$. Ce qui signifie que, lorsqu'on effectue un nombre élevé de lancers, si on n'obtient que des 6 sur ces lancers alors il y a de fortes chances que le dé tiré au hasard au départ soit pipé.

Mise à jour : 11/05/15

CC BY-NC-SA 3.0 FR Page 143

EXERCICE 106 probabilités

Énoncé exercice 106

X et Y sont deux variables aléatoires indépendantes et à valeurs dans \mathbb{N} .

Elles suivent la même loi définie par : $\forall k \in \mathbb{N}, P(X=k) = P(Y=k) = pq^k$ où $p \in [0,1[$ et q=1-p. On considère alors les variables U et V définies par $U = \sup(X, Y)$ et $V = \inf(X, Y)$.

- 1. Déterminer la loi du couple (U, V).
- 2. Expliciter les lois marginales de U et de V.
- 3. U et V sont-elles indépendantes?

Corrigé exercice 106

1. $(U,V)(\Omega) = \{(m,n) \in \mathbb{N}^2 \text{ tel que } m \geq n\}$. Soit $(m,n) \in \mathbb{N}^2$ tel que $m \geq n$.

Premier cas: si m=n

 $P((U=m)\cap (V=n))=P((X=n)\cap (Y=n))=P(X=n)P(Y=n)$ car X et Y sont indépendantes. Donc $P((U = m) \cap (V = n)) = p^2 q^{2n}$.

Deuxième cas : si m>n

$$P((U=m)\cap (V=n))=P([(X=m)\cap (Y=n)]\cup [(X=n)\cap (Y=m)])$$

Les événements $((X = m) \cap (Y = n))$ et $((X = n) \cap (Y = m))$ sont incompatibles donc :

 $P((U = m) \cap (V = n)) = P((X = m) \cap (Y = n)) + P((X = n) \cap (Y = m)).$

Or les variables X et Y suivent la même loi et sont indépendantes donc :

$$P((U = m) \cap (V = n)) = 2P(X = m)P(Y = n) = 2p^{2}q^{n+m}.$$

$$\mathbf{Bilan}: P((U=m)\cap (V=n)) = \left\{ \begin{array}{ll} p^2q^{2n} & \text{si } m=n \\ 2p^2q^{n+m} & \text{si } m>n \\ 0 & \text{sinon} \end{array} \right.$$

2. $U(\Omega) = \mathbb{N}$ et $V(\Omega) = \mathbb{N}$. Soit $m \in \mathbb{N}$.

2.
$$U(\Omega)=\mathbb{N}$$
 et $V(\Omega)=\mathbb{N}$. Soit $m\in\mathbb{N}$.
$$P(U=m)=\sum_{n=0}^{+\infty}P((U=m)\cap(V=n)). \text{ (loi marginale de }(U,V)\text{)}$$
 Donc d'après $1,$ m

$$P(U=m) = \sum_{n=0}^{m} P((U=m) \cap (V=n)) = P((U=m) \cap (V=m)) + \sum_{n=0}^{m-1} P((U=m) \cap (V=n)).$$

$$P(U=m) = p^2 q^{2m} + \sum_{n=0}^{m-1} 2p^2 q^{n+m} = p^2 q^{2m} + 2p^2 q^m \sum_{n=0}^{m-1} q^n = p^2 q^{2m} + 2p^2 q^m \frac{1-q^m}{1-q} = p^2 q^{2m} + 2pq^m (1-q^m)$$

De même,
$$P(V=n)=\sum_{m=0}^{+\infty}P((U=m)\cap (V=n)).$$
 (loi marginale de (U,V))

Done d'après 1,

$$P(V = n) = \sum_{m=n}^{+\infty} P((U = m) \cap (V = n)) = P((U = n) \cap (V = n)) + \sum_{m=n+1}^{+\infty} P((U = m) \cap (V = n)).$$

Donc
$$P(V=n) = p^2 q^{2n} + \sum_{m=n+1}^{+\infty} 2p^2 q^{n+m} = p^2 q^{2n} + 2p^2 q^n \sum_{m=n+1}^{+\infty} q^m = p^2 q^{2n} + 2p^2 q^{2n+1} \sum_{m=n+1}^{+\infty} q^{m-n-1}$$

Donc
$$P(V=n) = p^2 q^{2n} + 2p^2 q^{2n+1} \sum_{m=0}^{+\infty} q^m = p^2 q^{2n} + 2p^2 q^{2n+1} \frac{1}{1-q} = p^2 q^{2n} + 2pq^{2n+1} = pq^{2n}(p+2q)$$

Donc $\forall n \in \mathbb{N}, P(V = n) = pq^{2n}(1+q).$

3.
$$P((U=0) \cap (V=1)) = 0$$
 et $P(U=0)P(V=1) = p^2pq^2(1+q) \neq 0$.

Donc U et V ne sont pas indépendantes.

Page 144

EXERCICE 107 probabilités

Énoncé exercice 107

On dispose de deux urnes U_1 et U_2 .

L'urne U_1 contient deux boules blanches et trois boules noires.

L'urne U_2 contient quatre boules blanches et trois boules noires

On effectue des tirages successifs dans les conditions suivantes :

on choisit une urne au hasard et on tire une boule dans l'urne choisie.

On note sa couleur et on la remet dans l'urne d'où elle provient.

Si la boule tirée était blanche, le tirage suivant se fait dans l'urne U_1 .

Sinon le tirage suivant se fait dans l'urne U_2 .

Pour tout $n \in \mathbb{N}^*$, on note B_n l'événement « la boule tirée au $n^{\text{ième}}$ tirage est blanche » et on pose $p_n = P(B_n)$.

- 1. Calculer p_1
- 2. Prouver que : $\forall n \in \mathbb{N}^*, p_{n+1} = -\frac{6}{35}p_n + \frac{4}{7}$.
- 3. En déduire, pour tout entier naturel n non nul, la valeur de p_n .

Corrigé exercice 107

- 1. Notons U_1 l'événement le premier tirage se fait dans l'urne U_1 .
 - Notons U_2 l'événement le premier tirage se fait dans l'urne U_2 .

 (U_1, U_2) est un système complet dévénements.

Donc d'après la formule des probabilités totales, $p_1 = P(B_1) = P_{U_1}(B_1)P(U_1) + P_{U_2}(B_1)P(U_2)$.

Donc
$$p_1 = \frac{2}{5} \times \frac{1}{2} + \frac{4}{7} \times \frac{1}{2} = \frac{17}{35}$$

On a donc
$$p_1 = \frac{17}{35}$$

- 2. Soit $n \in \mathbb{N}^*$.
 - $(B_n, \overline{B_n})$ est un système complet d'événements.

Donc, d'après la formule des probabilités totales, $P(B_{n+1}) = P_{B_n}(B_{n+1})P(B_n) + P_{\overline{B_n}}(B_{n+1})P(\overline{B_n})$.

Alors en tenant compte des conditions de tirage, on a $p_{n+1} = \frac{2}{5}p_n + \frac{4}{7}(1-p_n)$.

Donc,
$$\forall n \in \mathbb{N}^*$$
. $p_{n+1} = -\frac{6}{35}p_n + \frac{4}{7}$.

3. $\forall n \in \mathbb{N}^*, \ p_{n+1} = -\frac{6}{35}p_n + \frac{4}{7}.$

Donc $(p_n)_{n\in\mathbb{N}^*}$ est une suite arithmético-géométrique

On résout l'équation
$$l = -\frac{6}{35}l + \frac{4}{7}$$
 et on trouve $l = \frac{20}{41}$

On considère alors la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par : $\forall\,n\in\mathbb{N}^*$, $u_n=p_n-l.$

$$(u_n)_{n\in\mathbb{N}^*}$$
 est géométrique de raison $-\frac{6}{35}$, donc, $\forall\,n\in\mathbb{N}^*,\,u_n=\left(-\frac{6}{35}\right)^{n-1}u_1$.

Or
$$u_1 = p_1 - l = \frac{17}{35} - \frac{20}{41} = -\frac{3}{1435}$$

On en déduit que,
$$\forall\,n\in\mathbb{N}^*,\,p_n=u_n+l,$$
 c'est-à-dire $p_n=-\frac{3}{1435}\left(-\frac{6}{35}\right)^{n-1}+\frac{20}{41}$

EXERCICE 108 probabilités

Énoncé exercice 108

Mise à jour : 11/05/15

Page 145

Soient X et Y deux variables aléatoires définies sur un même espace probabilisé (Ω, \mathcal{A}, P) et à valeurs dans \mathbb{N} . On suppose que la loi du couple (X,Y) est donnée par :

$$\forall \, (i,j) \in \mathbb{N}^2, \, P((X=i) \cap (Y=j)) = \frac{1}{\operatorname{e} 2^{i+1} j!}$$

- 1. Déterminer les lois de X et de Y
- 2. (a) Prouver que 1+X suit une loi géométrique et en déduire l'espérance et la variance de X.
- (b) Déterminer l'espérance et la variance de Y.
- 3. Les variables X et Y sont-elles indépendantes?
- 4. Calculer P(X = Y).

Corrigé exercice 108

1.
$$\forall (i,j) \in \mathbb{N}^2$$
, $P((X=i) \cap (Y=j)) = \frac{1}{e^{2^{i+1}j!}}$.

$$X(\Omega) = \mathbb{N}$$

Soit $i \in \mathbb{N}$.

$$\sum_{j\geqslant 0}\frac{1}{\mathrm{e}\,2^{i+1}j!}=\frac{1}{\mathrm{e}\,2^{i+1}}\sum_{j\geqslant 0}\frac{1}{j!}\;\mathrm{converge}\;\mathrm{et}\;\sum_{j=0}^{+\infty}\frac{1}{\mathrm{e}\,2^{i+1}j!}=\frac{1}{2^{i+1}}.$$

Or
$$P(X = i) = \sum_{j=0}^{+\infty} P((X = i) \cap (Y = j))$$
 donc $P(X = i) = \sum_{j=0}^{+\infty} \frac{1}{e^{2i+1}j!} = \frac{1}{e^{2i+1}} \sum_{j=0}^{+\infty} \frac{1}{j!} = \frac{1}{2^{i+1}}$.

Conclusion:
$$\forall i \in \mathbb{N}, P(X = i) = \frac{1}{2^{i+1}}.$$

$$Y(\Omega) = \mathbb{N}.$$

Soit $j \in \mathbb{N}$

$$\sum_{i \geqslant 0} \frac{1}{\mathrm{e}^{\; 2i+1} j!} = \frac{1}{2\mathrm{e} j!} \sum_{i \geqslant 0} \left(\frac{1}{2}\right)^i \text{ converge (série géométrique de raison } \frac{1}{2}) \text{ et } \sum_{i=0}^{+\infty} \frac{1}{\mathrm{e}^{\; 2i+1} j!} = \frac{1}{2\mathrm{e} j!} \frac{1}{1-\frac{1}{2}} = \frac{1}{\mathrm{e} j!}$$

Or
$$P(Y = j) = \sum_{i=0}^{+\infty} P((X = i) \cap (Y = j)).$$

Donc
$$P(Y = j) = \sum_{i=0}^{+\infty} \frac{1}{e^{2i+1}j!} = \frac{1}{2ej!} \sum_{i=0}^{+\infty} \left(\frac{1}{2}\right)^i = \frac{1}{2ej!} \frac{1}{1 - \frac{1}{2}} = \frac{1}{ej!}$$

Conclusion :
$$\forall j \in \mathbb{N}, P(Y = j) = \frac{1}{ej!}$$
.

2. (a) On pose Z = X + 1. $Z(\Omega) = N^*$.

De plus,
$$\forall n \in \mathbb{N}^*$$
, $P(Z = n) = P(X = n - 1) = \frac{1}{2^n} = \frac{1}{2} \left(\frac{1}{2}\right)^{n-1}$.

Donc Z suit une loi géométrique de paramètre $p = \frac{1}{2}$

Donc, d'après le cours,
$$E(Z)=\frac{1}{p}=2$$
 et $V(Z)=\frac{1-p}{p^2}=2$.
Donc $E(X)=E(Z-1)=E(Z)-1=2-1=1$ et $V(X)=V(Z-1)=V(Z)=2$.

C'est-à-dire E(X)=1 et V(X)=2. (b) Y suit une loi de Poisson de paramètre $\lambda=1$.

Donc, d'après le cours, $E(Y) = V(Y) = \lambda = 1$.

3. On a : \forall $(i,j) \in \mathbb{N}^2$, $P((X=i) \cap (Y=j)) = P(X=i)P(Y=j)$. Donc les variables X et Y sont indépendantes.

4. $(X = Y) = \bigcup_{k \in \mathbb{N}} ((X = k) \cap (Y = k))$ et il s'agit d'une union d'événements deux à deux incompatibles donc :

Mise à jour : 11/05/15

$$P(X = Y) = \sum_{k=0}^{+\infty} P((X = k) \cap (Y = k)) = \sum_{k=0}^{+\infty} \frac{1}{e^{2^{k+1}}} \frac{1}{k!} = \frac{1}{2e} \sum_{k=0}^{+\infty} \frac{\left(\frac{1}{2}\right)^k}{k!} = \frac{1}{2e} e^{\frac{1}{2}}$$

Donc
$$P(X = Y) = \frac{1}{2\sqrt{e}}$$
.

CC BY-NC-SA 3.0 FR Page 147

EXERCICE 109 probabilités

Énoncé exercice 109

Soit $n \in \mathbb{N}^*$. Une urne contient n boules blanches numérotées de 1 à n et deux boules noires numérotées 1 et 2. On effectue le tirage une à une, sans remise, de toutes les boules de l'urne.

On note X la variable aléatoire égale au rang d'apparition de la première boule blanche.

On note Y la variable aléatoire égale au rang d'apparition de la première boule numérotée 1.

- 1. Déterminer la loi de X.
- Déterminer la loi de Y.

Corrigé exercice 109

1. $X(\Omega) = [1, 3]$.

 $\forall i \in [1, n]$, on note B_i la $i^{\text{ème}}$ boule blanche.

 $\forall i \in [1, 2]$, on note N_i la $i^{\text{ème}}$ boule noire.

On pose $E = \{B_1, B_2, ..., B_n, N_1, N_2\}.$

Alors Ω est l'ensemble des permutations de E et donc card $(\Omega) = (n+2)!$.

(X=1) correspond aux tirages des (n+2) boules pour lesquels la première boule tirée est blanche. On a donc n possibilités pour le choix de la première boule blanche et donc (n+1)! possibilités pour les

Donc
$$P(X = 1) = \frac{n \times (n+1)!}{(n+2)!} = \frac{n}{n+2}$$

(X=2) correspond aux tirages des (n+2) boules pour lesquels la première boule tirée est noire et la seconde est blanche.

On a donc 2 possibilités pour la première boule, puis n possibilités pour la seconde boule et enfin n!possibilités pour les tirages restants.

Donc
$$P(X = 2) = \frac{2 \times n \times (n)!}{(n+2)!} = \frac{2n}{(n+1)(n+2)}$$
.

(X=3) correspond aux tirages des (n+2) boules pour lesquels la première boule et la seconde boule sont

On a donc 2 possibilités pour la première boule, puis une seule possibilité pour la seconde et enfin n!possibilités pour les boules restantes.

Donc
$$P(X = 3) = \frac{2 \times 1 \times (n)!}{(n+2)!} = \frac{2}{(n+1)(n+2)}$$

Autre méthode :

Dans cette méthode, on ne s'interesse qu'aux "premières" boules tirées, les autres étant sans importance. $X(\Omega) = [1, 3].$

$$(X=1)$$
 est l'événement : "obtenir une boule blanche au premier tirage". Donc $P(X=1)=\frac{\text{nombre de boules blanches}}{\text{nombre de boules de l'urne}}=\frac{n}{n+2}.$

(X=2) est l'événement : " obtenir une boule noire au premier tirage puis une boule blanche au second

D'où
$$P(X=2) = \frac{2}{n+2} \times \frac{n}{n+1} = \frac{2n}{(n+2)(n+1)}$$
, les tirages se faisant sans remise.

(X=3) est l'événement : "obtenir une boule noire lors de chacun des deux premiers tirages puis une boule blanche au troisième tirage"

D'où
$$P(X=2)=\frac{2}{n+2}\times\frac{1}{n+1}\times\frac{n}{n}=\frac{2}{(n+2)(n+1)}$$
, les tirages se faisant sans remise.

2.
$$Y(\Omega) = [1, n+1]$$
.

Soit
$$k \in [[1, n+1]]$$

L'événement (Y = k) correspond aux tirages des (n + 2) boules où les (k - 1) premières boules tirées ne sont ni B_1 ni N_1 et la $k^{\text{ième}}$ boule tirée est B_1 ou N_1 .

On a donc, pour les (k-1) premières boules tirées , $\binom{n}{k-1}$ choix possibles de ces boules et (k-1)!possibilités pour leur rang de tirage sur les (k-1) premiers tirages, puis 2 possibilités pour le choix de la $k^{\text{ième}}$ boule et enfin (n+2-k)! possibilités pour les rangs de tirage des boules restantes.

Mise à jour : 11/05/15

Donc
$$P(Y = k) = \frac{\binom{n}{k-1} \times (k-1)! \times 2 \times (n+2-k)!}{(n+2)!} = \frac{2\frac{n!}{(n-k+1)!} \times (n+2-k)!}{(n+2)!}$$

Donc $P(Y = k) = \frac{2(n+2-k)}{(n+1)(n+2)}$.

CC BY-NC-SA 3.0 FR Page 149 CC BY-NC-SA 3.0 FR Page 150

EXERCICE 110 probabilités

Énoncé exercice 110

Soit (Ω, A, P) un espace probabilisé

- 1. Soit X une variable aléatoire définie sur (Ω, \mathcal{A}, P) et à valeurs dans \mathbb{N} On considère la série entière $\sum t^n P(X=n)$ de variable réelle t. On note R_X son rayon de convergence.
- (a) Prouver que $R_X \geqslant 1$. On pose $G_X(t) = \sum_{n=0}^{+\infty} t^n P(X=n)$ et note D_{G_X} l'ensemble de définition de G_X . Pour tout réel t fixé, exprimer G_X sous forme d'une espérance.
- (b) Soit $k \in \mathbb{N}$. Exprimer, en justifiant la réponse, P(X = k) en fonction de $G_{\mathbf{v}}^{(k)}(0)$
- Déterminer D_{G_X} et, pour tout $t \in D_{G_X}$, calculer $G_X(t)$. (b) Soit X et Y deux variables aléatoires définies sur un même espace probabilisé, indépendantes et suivant
- des lois de Poisson de paramètres respectifs λ_1 et λ_2 . Déterminer, en utilisant les questions précédentes, la loi de X + Y.

Corrigé exercice 110

1. (a)
$$\forall n \in \mathbb{N}, \forall t \in]-1, 1[, |t^n P(X=n)| \leq P(X=n) \text{ et } \sum P(X=n) \text{ converge } (\sum_{n=0}^{+\infty} P(X=n)=1).$$

Donc
$$\forall t \in]-1,1[, \sum_{n} t^n P(X=n) \text{ converge absolument.}$$

2. (a) On suppose que X suit une loi de Poisson de paramètre λ .

Donc
$$R \geqslant 1$$
.
De plus, pour $t = 1$ et $t = -1$, la série $\sum t^n P(X = n)$ converge absolument, donc $[-1, 1] \subset D_{G_X}$.

On remarque que $G_X(t) = E(t^X)$. G_X est la fonction génératrice de X.

(b) Soit $k \in \mathbb{N}$. G_X est la somme d'une série entière de rayon de convergence $R \geqslant 1$. Donc, d'après le cours, G_X est de classe C^{∞} sur $]-1,1[\subset]-R_X,R_X[$

De plus,
$$\forall t \in]-1, 1[, G_X^{(k)}(t) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} t^{n-k} P(X=n).$$

En particulier
$$G_X^{(k)}(0) = k! P(X = k)$$
, donc $P(X = k) = \frac{G_X^{(k)}(0)}{k!}$.

2. (a) On suppose que X suit une loi de Poisson de paramètre λ .

) On suppose que
$$X$$
 suit une loi de Poisson de paramètre λ . $\forall t \in \mathbb{R}, \sum_{n} t^n P(X=n) = \sum_{n} t^n e^{-\lambda} \frac{\lambda^n}{n!} = e^{-\lambda} \sum_{n} \frac{(\lambda t)^n}{n!}$ converge (série exponentielle) et donc $D_{G_X} = \mathbb{R}$.

De plus,
$$\forall t \in \mathbb{R}$$
, $G_X(t) = e^{-\lambda} \sum_{n=0}^{+\infty} \frac{(\lambda t)^n}{n!} = e^{-\lambda} e^{\lambda t} = e^{\lambda(t-1)}$.

(b) On suppose que X et Y sont indépendantes et suivent des lois de Poisson de paramètres respectifs λ_1 et

$$D_{G_X} = D_{G_Y} = \mathbb{R}$$
 et, si on pose $Z = X + Y$, alors $[-1, 1] \subset D_{G_Z}$.

 $D_{G_X} = D_{G_Y} = \mathbb{R}$ et, si on pose Z = X + Y, alors $[-1,1] \subset D_{G_Z}$. Alors, $\forall \, t \in [-1,1], \, G_Z(t) = E(t^{X+Y}) = E(t^X t^Y) = E(t^X) E(t^Y)$ car X et Y sont indépendantes et donc, d'après le cours, t^X et t^Y sont indépendantes.

Donc, d'après 2.(a),
$$G_Z(t) = e^{\lambda_1(t-1)}e^{\lambda_2(t-1)} = e^{(\lambda_1+\lambda_2)(t-1)}$$
.

On reconnait la fonction génératrice d'une loi de Poisson de paramètre $\lambda_1 + \lambda_2$.

Donc, d'après 1.(b), comme Z a la même fonction génératrice qu'une loi de Poisson de paramètre $\lambda_1 + \lambda_2$, alors Z = X + Y suit une loi de Poisson de paramètre $\lambda_1 + \lambda_2$.

EXERCICE 111 probabilités

Énoncé exercice 111

On admet, dans cet exercice, que : $\forall q \in \mathbb{N}^*$, $\sum_{k \geq q} \binom{k}{q} x^{k-q}$ converge et $\forall x \in]-1,1[$, $\sum_{k=q}^{+\infty} \binom{k}{q} x^{k-q} = \frac{1}{(1-x)^{q+1}}$

Mise à jour : 11/05/15

Soit $p \in [0, 1[$.

Soit (Ω, A, P) un espace probabilisé.

Soit X et Y deux variables aléatoires définies sur (Ω, \mathcal{A}, P) et à valeurs dans \mathbb{N} .

On suppose que la loi de probabilité du couple (X,Y) est donnée par :

$$\forall \, (k,n) \in \mathbb{N}^2, \, P((X=k) \cap (Y=n)) = \left\{ \begin{array}{l} \binom{n}{k} \left(\frac{1}{2}\right)^n p(1-p)^n \text{ si } k \leqslant n \\ 0 \text{ sinon} \end{array} \right.$$

- 1. Vérifier qu'il s'agit bien d'une loi de probabilité.
- 2. (a) Déterminer la loi de Y.
- (b) Prouver que 1 + Y suit une loi géométrique.
- (c) Déterminer l'espérance de Y.
- 3. Déterminer la loi de X.

Corrigé exercice 111

1. On remarque que $\forall (k,n) \in \mathbb{N}^2$, $P((X=k) \cap (Y=n)) \ge 0$.

$$(X,Y)(\Omega) = \{(k,n) \in \mathbb{N}^2 \text{ tel que } k \leqslant n\}.$$

Posons
$$\forall (k, n) \in \mathbb{N}^2$$
, $p_{k,n} = P((X = k) \cap (Y = n))$.

 $\forall n \in \mathbb{N}, \sum_{k>0} p_{k,n}$ converge (car un nombre fini de termes non nuls).

$$\operatorname{Et} \sum_{k=0}^{+\infty} p_{k,n} = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{2}\right)^n p(1-p)^n = \left(\frac{1}{2}\right)^n p(1-p)^n \sum_{k=0}^{n} \binom{n}{k} = \left(\frac{1}{2}\right)^n p(1-p)^n 2^n = p(1-p)^n.$$

De plus, $\sum_{n\geq 0} p(1-p)^n = p \sum_{n\geq 0} (1-p)^n$ converge (série géométrique convergente car $(1-p) \in]0,1[)$.

Et
$$\sum_{n=0}^{+\infty} p(1-p)^n = p \sum_{n=0}^{+\infty} (1-p)^n = p \frac{1}{1-(1-p)} = 1.$$

Donc on définit bien une loi de probabilité.

2. (a) $Y(\Omega) = \mathbb{N}$.

Soit
$$n \in \mathbb{N}$$

$$P(Y=n) = \sum_{k=0}^{+\infty} P((X=k) \cap (Y=n)) \text{ (loi marginale)}$$

Donc, d'après les calculs précédents, $P(Y=n) = \sum_{k=0}^{n} {n \choose k} \left(\frac{1}{2}\right)^n p(1-p)^n = p(1-p)^n$.

C'est-à-dire, $\forall n \in \mathbb{N}, P(Y = n) = p(1 - p)^n$.

(b) Posons Z = 1 + Y.

$$Z(\Omega) = \mathbb{N}^* \text{ et } \forall n \in \mathbb{N}^*, P(Z = n) = P(Y = n - 1) = p(1 - p)^{n-1}.$$

Donc Z suit une loi géométrique de paramètre p.

(c) D'après la question précédente, $E(Z) = \frac{1}{2}$.

Or
$$Y = Z - 1$$
 donc $E(Y) = E(Z) - 1$ et donc $E(Y) = \frac{1 - p}{p}$.

3. $X(\Omega) = \mathbb{N}$.

Soit
$$k \in \mathbb{N}$$
. $P(X = k) = \sum_{n=0}^{+\infty} P((X = k) \cap (Y = n))$ (loi marginale)

$$\begin{aligned} & \text{Donc } P(X=k) = \sum_{n=k}^{+\infty} \binom{n}{k} \left(\frac{1}{2}\right)^n p(1-p)^n = p\left(\frac{1}{2}\right)^k (1-p)^k \sum_{n=k}^{+\infty} \binom{n}{k} \left(\frac{1}{2}(1-p)\right)^{n-k}. \\ & \text{Donc, d'après les résultats admis dans l'exercice, } P(X=k) = p\left(\frac{1}{2}\right)^k (1-p)^k \frac{1}{\left(1-\frac{1}{2}(1-p)\right)^{k+1}}. \end{aligned}$$

C'est-à-dire
$$P(X=k)=p\left(\frac{1}{2}\right)^k(1-p)^k\frac{2^{k+1}}{(1+p)^{k+1}}.$$

Donc,
$$\forall k \in \mathbb{N}, P(X = k) = \frac{2p}{1+p} \left(\frac{1-p}{1+p}\right)^k$$
.

EXERCICE 112 probabilités

Énoncé exercice 112

Soit $n \in \mathbb{N}^*$ et E un ensemble possédant n éléments. On désigne par $\mathcal{P}(E)$ l'ensemble des parties de E.

- 1. Déterminer le nombre a de couples $(A, B) \in (\mathcal{P}(E))^2$ tels que $A \subset B$.
- 2. Déterminer le nombre b de couples $(A, B) \in (\mathcal{P}(E))^2$ tels que $A \cap B = \emptyset$.
- 3. Déterminer le nombre c de triplets $(A, B, C) \in (\mathcal{P}(E))^3$ tels que A, B et C soient deux à deux disjoints et vérifient $A \cup B \cup C = E$.

Corrigé exercice 112

1. On note
$$F = \{(A, B) \in (\mathcal{P}(E))^2 / A \subset B\}$$
.

Soit
$$p \in [1, n]$$
. On pose $F_p = \{(A, B) \in (\mathcal{P}(E))^2 \mid A \subset B \text{ et card} B = p\}$

Soit $p \in [1, n]$. On pose $F_p = \{(A, B) \in (\mathcal{P}(E))^2 \mid A \subset B \text{ et } \operatorname{card} B = p\}$. Pour une partie B à p éléments donnée, le nombre de parties A de E telles que $A \subset B$ est $\operatorname{card} \mathcal{P}(B) = 2^p$. De plus, on a $\binom{n}{n}$ possibilités pour choisir une partie B de E à p éléments.

On en déduit que :
$$\forall p \in [0, n]$$
, card $F_p = \binom{n}{p} 2^p$.

Or
$$F = \bigcup_{p=0}^{n} F_p$$
 avec $F_0, F_1, ..., F_n$ deux à deux disjoints.

Donc
$$a=\operatorname{card} F=\sum_{p=0}^n\operatorname{card} F_p=\sum_{p=0}^n\binom{n}{p}2^p=3^n,$$
 d'après le binôme de Newton.

Conclusion : $a = 3^n$.

Le raisonnement suivant (corrigé non détaillé) permet également de répondre à la question 1.

Notons encore
$$F = \{(A, B) \in (\mathcal{P}(E))^2 / A \subset B\}$$

À tout couple (A,B) de F, on peut associer l'application $\varphi_{A,B}$ définie par :

$$E \longrightarrow \{1, 2, 3\}$$

$$\varphi_{A,B}: x \longmapsto \begin{cases} 1 & \text{si} & x \in A \\ 2 & \text{si} & x \notin A \text{ et } x \in B \\ 3 & \text{si} & x \notin B \end{cases}$$

On note $\mathcal{A}(E,\{1,2,3\})$ l'ensemble des applications de E dans $\{1,2,3\}$.

Alors l'application
$$\Theta: \begin{tabular}{ll} F & \longrightarrow & \mathcal{A}(E,\{1,2,3\}) \\ (A,B) & \longmapsto & \varphi_{A,B} \end{tabular}$$
 est bijective. Le résultat en découle.

2.
$$\{(A,B) \in (\mathcal{P}(E))^2 / A \cap B = \emptyset\} = \{(A,B) \in (\mathcal{P}(E))^2 / A \subset \overline{B}\}.$$

Or card
$$\{(A,B) \in (\mathcal{P}(E))^2 / A \subset \overline{B}\}$$
 = card $\{(A,\overline{B}) \in (\mathcal{P}(E))^2 / A \subset \overline{B}\}$
= card $\{(A,C) \in (\mathcal{P}(E))^2 / A \subset C\}$

3. Compter tous les triplets (A, B, C) tels que A, B et C soient deux à deux disjoints et tels que $A \cup B \cup C = E$ revient à compter tous les couples (A, B) tels que $A \cap B = \emptyset$ car, alors, C est obligatoirement égal à $\overline{A \cup B}.$

En d'autres termes,
$$c=\mathrm{card}\,\left\{(A,B)\in (\mathcal{P}(E))^2\ /\ A\cap B=\emptyset\right\}=b=3^n.$$